OFFSET
0,1
COMMENTS
Pafnuty Lvovich Chebyshev proved in 1852 that A*x/log(x) < pi(x) < B*x/log(x) holds for all x >= x(0) with some x(0) sufficiently large, where A is the constant given above and B = 6*A/5.
Nazardonyavi references this constant (but with a typo in the definition). - Charles R Greathouse IV, Nov 20 2018
REFERENCES
Harold M. Edwards, Riemann's zeta function, Dover Publications, Inc., New York, 2001, pp. 281-284.
Kolmogorov, A.N., Yushkevich, A.P. (Eds.), Mathematics of the 19th Century: Mathematical Logic, Algebra, Number Theory, Probability Theory, Birkhaeser-Verlag, 1992. See p. 185. - N. J. A. Sloane, Jan 20 2019
Sadegh Nazardonyavi, Improved explicit bounds for some functions of prime numbers, Functiones et Approximatio Commentarii Mathematici 58:1 (2018), pp. 7-22.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..10000
P. L. Chebyshev, Mémoire sur les nombres premiers, Journal de Math. Pures et Appl. 17 (1852), 366-390.
Wikipedia, Prime number theorem
FORMULA
Equals log(6^9*10^5)/30.
Equals log(2)/2 + log(3)/3 + log(5)/5 - log(30)/30 = (5/6)*A230192.
EXAMPLE
0.921292022934090780913408449961604716417080789093030241095500286433861...
MATHEMATICA
First[RealDigits[Log[6^9*10^5]/30, 10, 100]] (* Paolo Xausa, Apr 01 2024 *)
PROG
(PARI) default(realprecision, 105); x=log(6^9*10^5)/3; for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", "));
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Arkadiusz Wesolowski, Oct 11 2013
EXTENSIONS
Better definition from N. J. A. Sloane, Jan 20 2019
STATUS
approved