OFFSET
2,2
FORMULA
a(n) = Stirling1(n,2) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling1(n-k,2) * k * a(k).
a(n) = Sum_{k=1..floor(n/2)} (-1)^(k-1) * (2*k)! * Stirling1(n,2*k)/(k * 2^k). - Seiichi Manyama, Jan 23 2025
MATHEMATICA
nmax = 23; CoefficientList[Series[Log[1 + Log[1 + x]^2/2], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
a[n_] := a[n] = StirlingS1[n, 2] - (1/n) Sum[Binomial[n, k] StirlingS1[n - k, 2] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 2, 23}]
CROSSREFS
KEYWORD
sign,changed
AUTHOR
Ilya Gutkovskiy, Aug 08 2021
STATUS
approved