The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003713 Expansion of e.g.f. log(1/(1+log(1-x))). (Formerly M1799 N0710) 24
 0, 1, 2, 7, 35, 228, 1834, 17582, 195866, 2487832, 35499576, 562356672, 9794156448, 186025364016, 3826961710272, 84775065603888, 2011929826983504, 50929108873336320, 1369732445916318336, 39005083331889816960, 1172419218038422659456, 37095226237402478348544 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n+1) is the permanent of the n X n matrix M with M(i,i) = i+1, other entries 1. - Philippe Deléham, Nov 03 2005 Supernecklaces of type III (cycles of cycles). - Ricardo Bittencourt, May 05 2013 Unsigned coefficients for the raising / creation operator R for the Appell sequence of polynomials A238385: R = x + 1 - 2 D + 7 D^2/2! - 35 D^3/3! + ... . - Tom Copeland, May 09 2016 REFERENCES J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..100 P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5. Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 125. Jekuthiel Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. [Annotated scanned copy] INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 34 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 298 FORMULA Sum_{k=1..n} (k-1)!*|Stirling1(n, k)|. - Vladeta Jovovic, Sep 14 2003 a(n+1) = n! * Sum_{k=0..n} A007840(k)/k!. E.g., a(4) = 228 = 24*(1/1 + 1/1 + 3/2 + 14/6 + 88/24) = 24 + 24 + 36 + 56 + 88. - Philippe Deléham, Dec 10 2003 a(n) ~ (n-1)! * (exp(1)/(exp(1)-1))^n. - Vaclav Kotesovec, Jun 21 2013 a(0) = 0; a(n) = (n-1)! + Sum_{k=1..n-1} binomial(n-1,k) * (k-1)! * a(n-k). - Ilya Gutkovskiy, Jul 18 2020 MAPLE series(ln(1/(1+ln(1-x))), x, 17); with (combstruct): M[ 1798 ] := [ A, {A=Cycle(Cycle(Z))}, labeled ]: MATHEMATICA With[{nn=20}, CoefficientList[Series[Log[1/(1+Log[1-x])], {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Dec 15 2012 *) PROG (PARI) a(n)=if(n<0, 0, n!*polcoeff(-log(1+log(1-x+x*O(x^n))), n)) CROSSREFS a(n)=|A039814(n, 1)| (first column of triangle). Cf. A000268, A000310, A000359, A000406, A001765. Cf. A007840. Cf. A238385. Sequence in context: A185054 A014307 A000154 * A058129 A101514 A247240 Adjacent sequences:  A003710 A003711 A003712 * A003714 A003715 A003716 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS Thanks to Paul Zimmermann for comments. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 19:31 EDT 2021. Contains 344960 sequences. (Running on oeis4.)