login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185054
G.f.: 1/(1-x) = Sum_{n>=0} a(n) * x^n*(1-x)^n / Product_{k=1..n-1} (1 + k*x).
0
1, 1, 2, 7, 35, 226, 1780, 16489, 175191, 2095995, 27844858, 406243180, 6451271440, 110696475526, 2039751769020, 40151423775525, 840515332739587, 18638310752208047, 436301221978291734, 10748794565787775575, 277935932581614865791, 7524554625329583923280
OFFSET
0,3
COMMENTS
Compare g.f. to: 1/(1-x) = Sum_{n>=0} n! * x^n/Product_{k=1..n} (1 + k*x).
EXAMPLE
G.f.: 1/(1-x) = 1 + 1*x*(1-x) + 2*x^2*(1-x)^2/(1+x) + 7*x^3*(1-x)^3/((1+x)*(1+2*x)) + 35*x^4*(1-x)^4/((1+x)*(1+2*x)*(1+3*x)) + 226*x^5*(1-x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...
PROG
(PARI) {a(n)=if(n<0, 0, 1-polcoeff(sum(k=0, n-1, a(k)*x^k*(1-x)^k/prod(j=0, k-1, 1+j*x+x*O(x^n))), n))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A132624.
Sequence in context: A182224 A317421 A292182 * A014307 A000154 A003713
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 02 2012
STATUS
approved