OFFSET
0,3
COMMENTS
Compare g.f. to: 1/(1-x) = Sum_{n>=0} n! * x^n/Product_{k=1..n} (1 + k*x).
EXAMPLE
G.f.: 1/(1-x) = 1 + 1*x*(1-x) + 2*x^2*(1-x)^2/(1+x) + 7*x^3*(1-x)^3/((1+x)*(1+2*x)) + 35*x^4*(1-x)^4/((1+x)*(1+2*x)*(1+3*x)) + 226*x^5*(1-x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...
PROG
(PARI) {a(n)=if(n<0, 0, 1-polcoeff(sum(k=0, n-1, a(k)*x^k*(1-x)^k/prod(j=0, k-1, 1+j*x+x*O(x^n))), n))}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 02 2012
STATUS
approved