login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132624
Column 0 of triangle A132623.
8
1, 1, 3, 14, 87, 669, 6098, 64050, 759817, 10028799, 145575337, 2302441248, 39377544316, 723627151168, 14212023123570, 296941929433826, 6573946153123597, 153673571064191583, 3781352342496043197, 97672909528404096334, 2641852466110908004319
OFFSET
1,3
COMMENTS
Triangle T=A132623 is generated by sums of matrix powers of itself such that: T(n,k) = Sum_{j=1..n-k-1} [T^j](n-1,k) with T(n+1,n) = n+1 and T(n,n)=0 for n>=0.
LINKS
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See pp. 11, 31, 34.
FORMULA
G.f.: x = Sum_{n>=1} a(n) * x^n*(1-x)^n / Product_{k=1..n-1} (1 + k*x).
EXAMPLE
G.f.: x = 1*x*(1-x) + 1*x^2*(1-x)^2/(1+x) + 3*x^3*(1-x)^3/((1+x)*(1+2*x)) + 14*x^4*(1-x)^4/((1+x)*(1+2*x)*(1+3*x)) + 87*x^5*(1-x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...
MATHEMATICA
a[1] = 1; a[n_] := a[n] = SeriesCoefficient[x - Sum[a[k]*x^k*(1 - x)^k/ Product[1 + j*x + O[x]^n, {j, 0, k-1}], {k, 1, n-1}], {x, 0, n}];
Array[a, 21] (* Jean-François Alcover, Jul 26 2018, from PARI *)
PROG
(PARI) {a(n)=if(n<1, 0, polcoeff(x-sum(k=1, n-1, a(k)*x^k*(1-x)^k/prod(j=0, k-1, 1+j*x+x*O(x^n))), n))}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 25 2007
STATUS
approved