|
|
A132624
|
|
Column 0 of triangle A132623.
|
|
8
|
|
|
1, 1, 3, 14, 87, 669, 6098, 64050, 759817, 10028799, 145575337, 2302441248, 39377544316, 723627151168, 14212023123570, 296941929433826, 6573946153123597, 153673571064191583, 3781352342496043197, 97672909528404096334, 2641852466110908004319
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Triangle T=A132623 is generated by sums of matrix powers of itself such that: T(n,k) = Sum_{j=1..n-k-1} [T^j](n-1,k) with T(n+1,n) = n+1 and T(n,n)=0 for n>=0.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x = Sum_{n>=1} a(n) * x^n*(1-x)^n / Product_{k=1..n-1} (1 + k*x).
|
|
EXAMPLE
|
G.f.: x = 1*x*(1-x) + 1*x^2*(1-x)^2/(1+x) + 3*x^3*(1-x)^3/((1+x)*(1+2*x)) + 14*x^4*(1-x)^4/((1+x)*(1+2*x)*(1+3*x)) + 87*x^5*(1-x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...
|
|
MATHEMATICA
|
a[1] = 1; a[n_] := a[n] = SeriesCoefficient[x - Sum[a[k]*x^k*(1 - x)^k/ Product[1 + j*x + O[x]^n, {j, 0, k-1}], {k, 1, n-1}], {x, 0, n}];
|
|
PROG
|
(PARI) {a(n)=if(n<1, 0, polcoeff(x-sum(k=1, n-1, a(k)*x^k*(1-x)^k/prod(j=0, k-1, 1+j*x+x*O(x^n))), n))}
for(n=1, 20, print1(a(n), ", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|