login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132623
Triangle T, read by rows, where T(n,k) = Sum_{j=1..n-k-1} [T^j](n-1,k) with T(n+1,n) = n+1 and T(n,n)=0 for n>=0, where T^n denotes the n-th matrix power of T.
6
0, 1, 0, 1, 2, 0, 3, 2, 3, 0, 14, 8, 3, 4, 0, 87, 46, 15, 4, 5, 0, 669, 338, 102, 24, 5, 6, 0, 6098, 2992, 861, 188, 35, 6, 7, 0, 64050, 30800, 8589, 1788, 310, 48, 7, 8, 0, 759817, 360110, 98238, 19800, 3275, 474, 63, 8, 9, 0, 10028799, 4701734, 1262208, 248624
OFFSET
0,5
LINKS
FORMULA
G.f. of column k: (k+1)*x^(k+1) = Sum_{n>=0} T(n,k) * x^n * (1-x)^(n-k) / Product_{j=k+1..n-1} (1+j*x).
T(n,k) = [x^n] { (k+1)*x^(k+1) - Sum_{m=k+1..n-1} T(m,k)*x^m*(1-x)^(m-k) / Product_{j=k+1..m-1} (1+j*x) } for n>k with T(n,k)=0 when k>=n.
EXAMPLE
Triangle begins:
0;
1, 0;
1, 2, 0;
3, 2, 3, 0;
14, 8, 3, 4, 0;
87, 46, 15, 4, 5, 0;
669, 338, 102, 24, 5, 6, 0;
6098, 2992, 861, 188, 35, 6, 7, 0;
64050, 30800, 8589, 1788, 310, 48, 7, 8, 0;
759817, 360110, 98238, 19800, 3275, 474, 63, 8, 9, 0; ...
-------------------------------------
MATRIX POWER SERIES PROPERTY.
[I - T]^-1 = Sum_{n>=0} T^n and equals T shifted up 1 row
(with '1's in the main diagonal):
1;
1, 1;
3, 2, 1;
14, 8, 3, 1;
87, 46, 15, 4, 1;
669, 338, 102, 24, 5, 1; ...
-------------------------------------
GENERATE T FROM MATRIX POWERS OF T.
Matrix square T^2 begins:
0;
0, 0;
2, 0, 0;
5, 6, 0, 0;
23, 14, 12, 0, 0;
143, 78, 27, 20, 0, 0; ...
so that T(4,1) = T(3,1) + [T^2](3,1) = 2 + 6 = 8;
and T(3,0) = T(2,0) + [T^2](2,0) = 1 + 2 = 3.
Matrix cube T^3 begins:
0;
0, 0;
0, 0, 0;
6, 0, 0, 0;
26, 24, 0, 0, 0;
165, 94, 60, 0, 0, 0; ...
so that T(5,1) = T(4,1) + [T^2](4,1) + [T^3](4,1) = 8 + 14 + 24 = 46;
and T(4,0) = T(3,0) + [T^2](3,0) + [T^3](3,0) = 3 + 5 + 6 = 14.
-------------------------------------
ILLUSTRATE G.F. FOR COLUMN k:
k=0: x = T(1,0)*x*(1-x) + T(2,0)*x^2*(1-x)^2/((1+x)) + T(3,0)*x^3*(1-x)^3/((1+x)*(1+2*x)) + T(4,0)*x^4*(1-x)^4/((1+x)*(1+2*x)*(1+3*x)) +...
k=1: 2*x^2 = T(2,1)*x^2*(1-x) + T(3,1)*x^3*(1-x)^2/((1+2*x)) + T(4,1)*x^4*(1-x)^3/((1+2*x)*(1+3*x)) + T(5,1)*x^5*(1-x)^4/((1+2*x)*(1+3*x)*(1+4*x)) +...
k=2: 3*x^3 = T(3,2)*x^3*(1-x) + T(4,2)*x^4*(1-x)^2/((1+3*x)) + T(5,2)*x^5*(1-x)^3/((1+3*x)*(1+4*x)) + T(6,2)*x^6*(1-x)^4/((1+3*x)*(1+4*x)*(1+5*x)) +...
PROG
(PARI) /* Using the matrix power formula: */
T(n, k)=local(M=if(n<=0, Mat(1), matrix(n, n, r, c, if(r>=c, T(r-1, c-1))))); if(n<k || k<0, 0, if(n==k, 0, if(n==k+1, n, sum(j=1, n-k-1, (M^j)[n, k+1]) )))
(PARI) /* Using the g.f. formula for columns: */
T(n, k)=if(n<k+1, 0, polcoeff((k+1)*x^(k+1)-sum(m=k+1, n-1, T(m, k)*x^m*(1-x)^(m-k)/prod(j=k+1, m-1, 1+j*x+x*O(x^n))), n))
for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A132624 (column 0), A208676, A208677, A208678.
Sequence in context: A359674 A323248 A324397 * A277890 A243403 A051613
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Aug 25 2007
STATUS
approved