login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243403
Number of primes p < n such that p*(n-p) is a primitive root modulo prime(n).
5
0, 0, 1, 1, 2, 0, 3, 2, 3, 2, 1, 3, 3, 2, 3, 4, 4, 1, 4, 1, 2, 2, 5, 8, 5, 1, 1, 5, 3, 6, 6, 7, 6, 6, 4, 2, 4, 3, 6, 11, 6, 4, 3, 7, 6, 8, 3, 2, 10, 9, 6, 11, 2, 8, 9, 9, 5, 2, 5, 2, 3, 13, 5, 14, 8, 12, 7, 8, 9, 6, 13, 9, 4, 10, 3, 13, 12, 4, 8, 4
OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 for all n > 6.
We have verified this for all n = 7, ..., 2*10^5.
LINKS
Zhi-Wei Sun, New observations on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
EXAMPLE
a(18) = 1 since 17 is prime with 17*(18-17) = 17 a primitive root modulo prime(18) = 61.
a(20) = 1 since 11 is prime with 11*(20-11) = 99 a primitive root modulo prime(20) = 71.
a(26) = 1 since 2 is prime with 2*(26-2) = 48 a primitive root modulo prime(26) = 101.
a(27) = 1 since 17 is prime with 17*(27-17) = 170 a primitive root modulo prime(27) = 103.
MATHEMATICA
dv[n_]:=Divisors[n]
Do[m=0; Do[Do[If[Mod[(Prime[k]*(n-Prime[k]))^(Part[dv[Prime[n]-1], i]), Prime[n]]==1, Goto[aa]], {i, 1, Length[dv[Prime[n]-1]]-1}]; m=m+1; Label[aa]; Continue, {k, 1, PrimePi[n-1]}];
Print[n, " ", m]; Continue, {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jun 04 2014
STATUS
approved