The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243402 Primes p such that p^10 - p^9 - p^8 - p^7 - p^6 - p^5 - p^4 - p^3 - p^2 - p - 1 is prime. 1
 449, 839, 857, 941, 977, 1109, 1289, 1607, 1901, 2591, 2711, 3041, 3299, 4007, 4349, 4721, 5531, 5849, 6311, 6779, 6911, 7451, 7829, 7907, 8369, 8597, 8999, 9419, 9767, 11351, 12917, 13421, 14321, 14969, 15077, 15131, 15227, 15551, 15809, 16649, 16979, 17021, 17291, 17417 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS No terms end in a 3, since if p == 3 (mod 10), then p^10 - p^9 - p^8 - p^7 - p^6 - p^5 - p^4 - p^3 - p^2 - p - 1 == 5 (mod 10) and is therefore not prime. - Michel Marcus, Jun 25 2014 LINKS K. D. Bajpai, Table of n, a(n) for n = 1..11323 MATHEMATICA Select[Prime[Range[2100]], PrimeQ[#^10-Total[#^Range[9]]-1]&] (* Harvey P. Dale, Sep 08 2019 *) PROG (Python) import sympy from sympy import isprime {print(n, end=', ') for n in range(5*10**4) if isprime(n**10-n**9-n**8-n**7-n**6-n**5-n**4-n**3-n**2-n-1) and isprime(n)} (PARI) for(n=1, 5*10^4, if(ispseudoprime(n)&&ispseudoprime(n^10-sum(i=0, 9, n^i)), print1(n, ", "))) CROSSREFS Cf. A243318. Sequence in context: A339532 A105376 A325083 * A135073 A160291 A193255 Adjacent sequences:  A243399 A243400 A243401 * A243403 A243404 A243405 KEYWORD nonn AUTHOR Derek Orr, Jun 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 08:57 EDT 2022. Contains 354026 sequences. (Running on oeis4.)