login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243401
Primes p such that p^8 - p^7 - p^6 - p^5 - p^4 - p^3 - p^2 - p - 1 is prime.
0
5, 23, 41, 61, 73, 103, 109, 157, 167, 181, 307, 311, 347, 367, 467, 577, 593, 601, 677, 709, 739, 839, 863, 1039, 1181, 1201, 1279, 1381, 1399, 1621, 1627, 1789, 1847, 1861, 1871, 1913, 1997, 2063, 2287, 2347, 2371, 2657, 2699, 2797, 2887, 2963, 3209, 3343, 3359, 3623
OFFSET
1,1
EXAMPLE
5 is prime and 5^8 - 5^7 - 5^6 - 5^5 - 5^4 - 5^3 - 5^2 - 5 - 1 = 292969 is prime. Thus 5 is a member of this sequence.
PROG
(Python)
import sympy
from sympy import isprime
{print(n, end=', ') for n in range(10**4) if isprime(n**8-n**7-n**6-n**5-n**4-n**3-n**2-n-1) and isprime(n)}
(PARI) for(n=1, 10^4, if(ispseudoprime(n)&&ispseudoprime(n^8-sum(i=0, 7, n^i)), print1(n, ", ")))
CROSSREFS
Cf. A243297.
Sequence in context: A044447 A242215 A061240 * A062341 A176251 A293533
KEYWORD
nonn
AUTHOR
Derek Orr, Jun 04 2014
STATUS
approved