login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243401 Primes p such that p^8 - p^7 - p^6 - p^5 - p^4 - p^3 - p^2 - p - 1 is prime. 0
5, 23, 41, 61, 73, 103, 109, 157, 167, 181, 307, 311, 347, 367, 467, 577, 593, 601, 677, 709, 739, 839, 863, 1039, 1181, 1201, 1279, 1381, 1399, 1621, 1627, 1789, 1847, 1861, 1871, 1913, 1997, 2063, 2287, 2347, 2371, 2657, 2699, 2797, 2887, 2963, 3209, 3343, 3359, 3623 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..50.

EXAMPLE

5 is prime and 5^8 - 5^7 - 5^6 - 5^5 - 5^4 - 5^3 - 5^2 - 5 - 1 = 292969 is prime. Thus 5 is a member of this sequence.

PROG

(Python)

import sympy

from sympy import isprime

{print(n, end=', ') for n in range(10**4) if isprime(n**8-n**7-n**6-n**5-n**4-n**3-n**2-n-1) and isprime(n)}

(PARI) for(n=1, 10^4, if(ispseudoprime(n)&&ispseudoprime(n^8-sum(i=0, 7, n^i)), print1(n, ", ")))

CROSSREFS

Cf. A243297.

Sequence in context: A044447 A242215 A061240 * A062341 A176251 A293533

Adjacent sequences:  A243398 A243399 A243400 * A243402 A243403 A243404

KEYWORD

nonn

AUTHOR

Derek Orr, Jun 04 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 06:44 EST 2022. Contains 350565 sequences. (Running on oeis4.)