login
A242215
a(n) = 18*n + 5.
2
5, 23, 41, 59, 77, 95, 113, 131, 149, 167, 185, 203, 221, 239, 257, 275, 293, 311, 329, 347, 365, 383, 401, 419, 437, 455, 473, 491, 509, 527, 545, 563, 581, 599, 617, 635, 653, 671, 689, 707, 725, 743, 761, 779, 797, 815, 833, 851, 869, 887, 905, 923, 941, 959
OFFSET
0,1
COMMENTS
Conjecture: there are infinitely many composite Fermat numbers such that no one of them has a divisor that belongs to this sequence.
FORMULA
G.f.: (5 + 13*x)/(1 - x)^2.
MAPLE
seq(18*n+5, n=0..53);
MATHEMATICA
Table[18*n + 5, {n, 0, 53}]
LinearRecurrence[{2, -1}, {5, 23}, 60] (* Harvey P. Dale, Aug 25 2017 *)
PROG
(Magma) [18*n+5: n in [0..53]];
(PARI) for(n=0, 53, print1(18*n+5, ", "));
CROSSREFS
Supersequence of A061240. Cf. A229855.
Sequence in context: A098421 A371622 A044447 * A061240 A243401 A062341
KEYWORD
nonn,easy
AUTHOR
STATUS
approved