login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229855
a(n) = 384*n + 257.
4
257, 641, 1025, 1409, 1793, 2177, 2561, 2945, 3329, 3713, 4097, 4481, 4865, 5249, 5633, 6017, 6401, 6785, 7169, 7553, 7937, 8321, 8705, 9089, 9473, 9857, 10241, 10625, 11009, 11393, 11777, 12161, 12545, 12929, 13313, 13697, 14081, 14465, 14849, 15233, 15617, 16001
OFFSET
0,1
COMMENTS
Every composite Fermat number has at least two divisors of the form 384*n + 257, n > 0.
FORMULA
G.f.: (257 + 127*x)/(1 - x)^2.
a(n) = 128*A016789(n) + 1.
From Elmo R. Oliveira, Dec 08 2024: (Start)
E.g.f.: exp(x)*(257 + 384*x).
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)
MAPLE
seq(384*n+257, n=0..40);
MATHEMATICA
Table[384*n + 257, {n, 0, 40}]
PROG
(Magma) [384*n+257 : n in [0..40]];
(PARI) for(n=0, 40, print1(384*n+257, ", "));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved