OFFSET
0,1
COMMENTS
Every composite Fermat number has at least two divisors of the form 384*n + 257, n > 0.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 0..1000
Wikipedia, Fermat number.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
G.f.: (257 + 127*x)/(1 - x)^2.
a(n) = 128*A016789(n) + 1.
From Elmo R. Oliveira, Dec 08 2024: (Start)
E.g.f.: exp(x)*(257 + 384*x).
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)
MAPLE
seq(384*n+257, n=0..40);
MATHEMATICA
Table[384*n + 257, {n, 0, 40}]
PROG
(Magma) [384*n+257 : n in [0..40]];
(PARI) for(n=0, 40, print1(384*n+257, ", "));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Arkadiusz Wesolowski, Oct 01 2013
STATUS
approved