login
A229855
384*n + 257.
4
257, 641, 1025, 1409, 1793, 2177, 2561, 2945, 3329, 3713, 4097, 4481, 4865, 5249, 5633, 6017, 6401, 6785, 7169, 7553, 7937, 8321, 8705, 9089, 9473, 9857, 10241, 10625, 11009, 11393, 11777, 12161, 12545, 12929, 13313, 13697, 14081, 14465, 14849, 15233, 15617
OFFSET
0,1
COMMENTS
Every composite Fermat number has at least two divisors of the form 384*n + 257, n > 0.
FORMULA
G.f.: (257 + 127*x)/(1 - x)^2.
a(n) = 128*A016789(n) + 1.
MAPLE
seq(384*n+257, n=0..40);
MATHEMATICA
Table[384*n + 257, {n, 0, 40}]
PROG
(Magma) [384*n+257 : n in [0..40]]
(PARI) for(n=0, 40, print1(384*n+257, ", "));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved