login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250726
Number of (n+1) X (5+1) 0..1 arrays with nondecreasing x(i,j)+x(i,j-1) in the i direction and nondecreasing min(x(i,j),x(i-1,j)) in the j direction.
1
257, 596, 1158, 2092, 3605, 6016, 9728, 15297, 23407, 34943, 50970, 72810, 102025, 140498, 190420, 254375, 335331, 436729, 562478, 717048, 905469, 1133428, 1407272, 1734109, 2121815, 2579139, 3115714, 3742166, 4470129, 5312358, 6282748, 7396451
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8) for n>10.
Empirical for n mod 2 = 0: a(n) = (1/360)*n^6 + (1/12)*n^5 + (49/36)*n^4 + (13/3)*n^3 + (15169/360)*n^2 + (1957/12)*n + 43 for n>2.
Empirical for n mod 2 = 1: a(n) = (1/360)*n^6 + (1/12)*n^5 + (49/36)*n^4 + (13/3)*n^3 + (15169/360)*n^2 + (1957/12)*n + 40 for n>2.
Empirical g.f.: x*(257 - 946*x + 1180*x^2 - 110*x^3 - 1079*x^4 + 1060*x^5 - 440*x^6 + 93*x^7 - 12*x^8 + x^9) / ((1 - x)^7*(1 + x)). - Colin Barker, Nov 16 2018
EXAMPLE
Some solutions for n=4:
..0..0..0..0..0..0....0..0..0..1..1..1....0..0..0..0..0..0....0..0..0..0..0..1
..0..0..0..0..0..0....0..0..1..1..1..1....0..0..0..0..0..0....0..0..0..0..0..1
..0..0..0..0..0..0....0..1..1..1..1..1....0..0..0..0..0..0....0..0..0..0..1..1
..0..0..0..0..0..1....0..1..1..1..1..1....0..0..0..0..0..0....0..1..0..0..1..1
..0..0..0..0..0..1....1..1..1..1..1..1....1..1..1..0..1..0....1..0..1..0..1..1
CROSSREFS
Column 5 of A250729.
Sequence in context: A095321 A100633 A007765 * A142291 A208177 A229855
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 27 2014
STATUS
approved