login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 18*n + 5.
2

%I #17 Dec 08 2024 16:07:22

%S 5,23,41,59,77,95,113,131,149,167,185,203,221,239,257,275,293,311,329,

%T 347,365,383,401,419,437,455,473,491,509,527,545,563,581,599,617,635,

%U 653,671,689,707,725,743,761,779,797,815,833,851,869,887,905,923,941,959

%N a(n) = 18*n + 5.

%C Conjecture: there are infinitely many composite Fermat numbers such that no one of them has a divisor that belongs to this sequence.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Fermat_number">Fermat number</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F G.f.: (5 + 13*x)/(1 - x)^2.

%F From _Elmo R. Oliveira_, Dec 08 2024: (Start)

%F E.g.f.: exp(x)*(5 + 18*x).

%F a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)

%p seq(18*n+5, n=0..53);

%t Table[18*n + 5, {n, 0, 53}]

%t LinearRecurrence[{2,-1},{5,23},60] (* _Harvey P. Dale_, Aug 25 2017 *)

%o (Magma) [18*n+5: n in [0..53]];

%o (PARI) for(n=0, 53, print1(18*n+5, ", "));

%Y Supersequence of A061240.

%Y Cf. A229855.

%K nonn,easy

%O 0,1

%A _Arkadiusz Wesolowski_, May 07 2014