login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243401 Primes p such that p^8 - p^7 - p^6 - p^5 - p^4 - p^3 - p^2 - p - 1 is prime. 0

%I

%S 5,23,41,61,73,103,109,157,167,181,307,311,347,367,467,577,593,601,

%T 677,709,739,839,863,1039,1181,1201,1279,1381,1399,1621,1627,1789,

%U 1847,1861,1871,1913,1997,2063,2287,2347,2371,2657,2699,2797,2887,2963,3209,3343,3359,3623

%N Primes p such that p^8 - p^7 - p^6 - p^5 - p^4 - p^3 - p^2 - p - 1 is prime.

%e 5 is prime and 5^8 - 5^7 - 5^6 - 5^5 - 5^4 - 5^3 - 5^2 - 5 - 1 = 292969 is prime. Thus 5 is a member of this sequence.

%o (Python)

%o import sympy

%o from sympy import isprime

%o {print(n,end=', ') for n in range(10**4) if isprime(n**8-n**7-n**6-n**5-n**4-n**3-n**2-n-1) and isprime(n)}

%o (PARI) for(n=1,10^4,if(ispseudoprime(n)&&ispseudoprime(n^8-sum(i=0,7,n^i)),print1(n,", ")))

%Y Cf. A243297.

%K nonn

%O 1,1

%A _Derek Orr_, Jun 04 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 06:07 EDT 2022. Contains 353783 sequences. (Running on oeis4.)