OFFSET
1,1
COMMENTS
Also cyclic numbers of the fourteenth degree (or fourteenth order): the reciprocals of these numbers belong to one of fourteen different cycles. Each cycle has the (number minus 1)/14 digits.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..57 from R. J. Mathar, Feb 21 2008)
Makoto Kamada, Factorizations of 11...11 (Repunit).
EXAMPLE
1289 has period of reciprocal 92, or (1289/1)/14.
MAPLE
A007732 := proc(n) local nred25 ; nred25 := n ; while nred25 mod 2 = 0 and nred25 > 1 do nred25 := nred25/2 ; od; while nred25 mod 5 = 0 and nred25 > 1 do nred25 := nred25/5 ; od; if nred25 = 1 then 1; else numtheory[order](10, nred25) ; fi ; end: for n from 1 to 22000 do p := ithprime(n) ; if 14*A007732(p) = p-1 then printf("%d, ", p) ; fi ; od: # R. J. Mathar, Feb 21 2008
MATHEMATICA
Select[Prime[Range[4500]], Length[RealDigits[1/#][[1, 1]]]==(#-1)/14&] (* Harvey P. Dale, Jun 22 2013 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Julien Peter Benney (jpbenney(AT)gmail.com), Feb 12 2008
EXTENSIONS
Corrected and extended by R. J. Mathar, Feb 21 2008
STATUS
approved