login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135073
Primes for which the period of the reciprocal equals (p-1)/14.
6
449, 1289, 3557, 4397, 4999, 5209, 6203, 6637, 7043, 8387, 10613, 11369, 13147, 13399, 14323, 16871, 18481, 19391, 20147, 20707, 26489, 28813, 29387, 29947, 30241, 32831, 32999, 33587, 36107, 37591, 38053, 39719, 40559, 41231, 41609
OFFSET
1,1
COMMENTS
Also cyclic numbers of the fourteenth degree (or fourteenth order): the reciprocals of these numbers belong to one of fourteen different cycles. Each cycle has the (number minus 1)/14 digits.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..57 from R. J. Mathar, Feb 21 2008)
EXAMPLE
1289 has period of reciprocal 92, or (1289/1)/14.
MAPLE
A007732 := proc(n) local nred25 ; nred25 := n ; while nred25 mod 2 = 0 and nred25 > 1 do nred25 := nred25/2 ; od; while nred25 mod 5 = 0 and nred25 > 1 do nred25 := nred25/5 ; od; if nred25 = 1 then 1; else numtheory[order](10, nred25) ; fi ; end: for n from 1 to 22000 do p := ithprime(n) ; if 14*A007732(p) = p-1 then printf("%d, ", p) ; fi ; od: # R. J. Mathar, Feb 21 2008
MATHEMATICA
Select[Prime[Range[4500]], Length[RealDigits[1/#][[1, 1]]]==(#-1)/14&] (* Harvey P. Dale, Jun 22 2013 *)
KEYWORD
nonn,base
AUTHOR
Julien Peter Benney (jpbenney(AT)gmail.com), Feb 12 2008
EXTENSIONS
Corrected and extended by R. J. Mathar, Feb 21 2008
STATUS
approved