login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135074
A binomial recursion: a(n) is the coefficient of x in z(n), where z(1) = x and z(n) = 1 + Sum_{k=1..n-1} (binomial(n,k) + 1)*z(k) for n > 1.
8
1, 3, 16, 106, 851, 8044, 87540, 1078177, 14827510, 225228130, 3745187549, 67666969438, 1320018345504, 27651573264631, 619077538462468, 14752261527199414, 372797929345665683, 9958134039336196072, 280354873141108774272, 8297089960595144115505, 257514010200875255884522
OFFSET
1,2
LINKS
FORMULA
Let z(1) = x and z(n) = 1 + Sum_{k=1..n-1}( (1 + binomial(n,k))*z(k) ), then z(n) = p(n)*x + q(n). Lim n-->infinity p(n)/q(n) = (3*Pi -14) / (8 -3*Pi) = 3.2111824896280692148...
a(n) ~ (14 - 3*Pi) * sqrt(n) * n! / (9 * sqrt(Pi) * log(2)^(n + 3/2)). - Vaclav Kotesovec, Nov 25 2020
E.g.f.: (exp(3*x/2)*(14 + 3*Pi) - 12*exp(3*x/2)*arcsin(exp(x/2)/sqrt(2))) / (18*(2 - exp(x))^(3/2)) - (2*(1 - 3*x) + exp(x)*(5 + 3*x))/(9*(2 - exp(x))). - Vaclav Kotesovec, Nov 25 2020
MATHEMATICA
z[1] := x; z[n_] := 1 + Sum[(1 + Binomial[n, k])*z[k], {k, 1, n - 1}];
Table[Coefficient[z[n], x], {n, 1, 15}] (* G. C. Greubel, Sep 22 2016 *)
z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(1 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x], {n, 1, 30}] (* Vaclav Kotesovec, Nov 25 2020 *)
nmax = 30; Rest[Simplify[CoefficientList[Series[(E^(3*x/2)*(14 + 3*Pi) - 12*E^(3*x/2)*ArcSin[E^(x/2)/Sqrt[2]]) / (18*(2 - E^x)^(3/2)) - (2*(1 - 3*x) + E^x*(5 + 3*x))/(9*(2 - E^x)), {x, 0, nmax}], x] * Range[0, nmax]!]] (* Vaclav Kotesovec, Nov 25 2020 *)
PROG
(PARI) r=1; s=1; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);
CROSSREFS
Cf. A135075.
Sequence in context: A157452 A369694 A074551 * A292752 A220379 A191800
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 17 2007
EXTENSIONS
New name from Charles R Greathouse IV, Sep 22 2016
More terms from Amiram Eldar, Nov 25 2020
STATUS
approved