The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A369694 Expansion of (1/x) * Series_Reversion( x * ((1-x)^3-x^2) ). 2
 1, 3, 16, 106, 786, 6244, 51964, 447201, 3947306, 35538668, 325098696, 3013060258, 28232408848, 267003169668, 2545341982728, 24433290332007, 235967943943224, 2291147902820524, 22352525061549604, 219006814853751540, 2154083325737401740 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..20. Index entries for reversions of series FORMULA a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(4*n+k+2,n-2*k). a(n) ~ sqrt((60 + (220324 - 42734*sqrt(2))^(1/3) + (220324 + 42734*sqrt(2))^(1/3)) / (138*Pi)) * (((4/23)*(22 + 3*(293 - 92*sqrt(2))^(1/3) + 3*(293 + 92*sqrt(2))^(1/3)))^n / n^(3/2)). - Vaclav Kotesovec, Jan 29 2024 MATHEMATICA CoefficientList[InverseSeries[Series[x*((1-x)^3 - x^2), {x, 0, 30}], x]/x, x](* Vaclav Kotesovec, Jan 29 2024 *) PROG (PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^3-x^2))/x) (PARI) a(n) = sum(k=0, n\2, binomial(n+k, k)*binomial(4*n+k+2, n-2*k))/(n+1); CROSSREFS Cf. A001002, A151374. Cf. A369114, A369161, A369215. Sequence in context: A370092 A063548 A157452 * A074551 A135074 A292752 Adjacent sequences: A369691 A369692 A369693 * A369695 A369696 A369697 KEYWORD nonn AUTHOR Seiichi Manyama, Jan 29 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 18:16 EDT 2024. Contains 371916 sequences. (Running on oeis4.)