login
A369697
Number of unordered pairs (p,q) of distinct partitions of n such that the set of parts in q is equal to the set of parts in p.
3
0, 0, 0, 0, 0, 1, 1, 4, 5, 12, 19, 35, 53, 91, 136, 225, 325, 505, 741, 1107, 1590, 2340, 3313, 4748, 6682, 9412, 13091, 18241, 25080, 34478, 47118, 64069, 86698, 117012, 157121, 210189, 280385, 372309, 493279, 650905, 856913, 1123675, 1471196, 1918293, 2497470
OFFSET
0,8
LINKS
FORMULA
a(n) = (A369695(n) - A000041(n))/2.
EXAMPLE
a(5) = 1: (221, 2111).
a(6) = 1: (2211, 21111).
a(7) = 4: (22111, 211111), (2221, 211111), (2221, 22111), (331, 31111).
a(8) = 5: (221111, 2111111), (22211, 2111111), (22211, 221111), (3221, 32111), (3311, 311111).
a(9) = 12: (2211111, 21111111), (222111, 21111111), (222111, 2211111), (22221, 21111111), (22221, 2211111), (22221, 222111), (32211, 321111), (33111, 3111111), (3321, 321111), (3321, 32211), (4221, 42111), (441, 411111).
a(10) = 19: (22111111, 211111111), (2221111, 211111111), (2221111, 22111111), (222211, 211111111), (222211, 22111111), (222211, 2221111), (322111, 3211111), (32221, 3211111), (32221, 322111), (331111, 31111111), (33211, 3211111), (33211, 322111), (33211, 32221), (3331, 31111111), (3331, 331111), (42211, 421111), (4411, 4111111), (442, 4222), (5221, 52111).
MAPLE
b:= proc(n, m, i) option remember; `if`(n=0,
`if`(m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1)+add(add(
b(sort([n-i*j, m-i*h])[], i-1), h=1..m/i), j=1..n/i)))
end:
a:= n-> (b(n$3)-combinat[numbpart](n))/2:
seq(a(n), n=0..50);
MATHEMATICA
b[n_, m_, i_] := b[n, m, i] = If[n == 0, If[m == 0, 1, 0], If[i < 1, 0, b[n, m, i-1] + Sum[Sum[b[Sequence @@ Sort[{n-i*j, m-i*h}], i-1], {h, 1, m/i}], { j, 1, n/i}]]];
a[n_] := (b[n, n, n] - PartitionsP[n])/2;
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 29 2024, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 29 2024
STATUS
approved