login
A369215
Expansion of (1/x) * Series_Reversion( x * ((1-x)^3-x) ).
5
1, 4, 29, 261, 2627, 28315, 319648, 3731037, 44663058, 545312504, 6764556591, 85015779095, 1080185111768, 13852183882612, 179058158369828, 2330621446075640, 30519758687849439, 401806204894374041, 5315243189757111099, 70613088335938995385, 941714812929017751855
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+k,k) * binomial(4*n+2*k+2,n-k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^3-x))/x)
(PARI) a(n) = sum(k=0, n, binomial(n+k, k)*binomial(4*n+2*k+2, n-k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 16 2024
STATUS
approved