OFFSET
1,2
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..871
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
G.f.: Series_Reversion(x - 4*x^2 + 3*x^3).
G.f. A(x) satisfies: x = -2*(1-A(x)) + 5*(1-A(x))^2 - 3*(1-A(x))^3.
a(n) ~ (7*sqrt(7)+10)^(n-1/2) / (sqrt(Pi) * 7^(1/4) * n^(3/2) * 2^(n+1/2)). - Vaclav Kotesovec, Aug 22 2017
EXAMPLE
G.f.: A(x) = x + 4*x^2 + 29*x^3 + 260*x^4 + 2603*x^5 + 27888*x^6 +...
Related expansions.
A(x)^2 = x^2 + 8*x^3 + 74*x^4 + 752*x^5 + 8127*x^6 + 91680*x^7 +...
A(x)^3 = x^3 + 12*x^4 + 135*x^5 + 1540*x^6 + 17964*x^7 + 213948*x^8 +...
where x = A(x) - 4*A(x)^2 + 3*A(x)^3.
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - 4*x^2 + 3*x^3, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Aug 22 2017 *)
PROG
(PARI) {a(n)=polcoeff(serreverse(x - 4*x^2 + 3*x^3 + x^2*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 28 2014
STATUS
approved