login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250883
Number of (6+1) X (n+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)+x(i-1,j) in the j direction.
1
155080, 553736, 1350002, 2681528, 4685964, 7500960, 11264166, 16113232, 22185808, 29619544, 38552090, 49121096, 61464212, 75719088, 92023374, 110514720, 131330776, 154609192, 180487618, 209103704, 240595100, 275099456
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (68825/3)*n^3 + 61155*n^2 + (163798/3)*n + 16384.
Conjectures from Colin Barker, Nov 22 2018: (Start)
G.f.: 2*x*(77540 - 33292*x + 32769*x^2 - 8192*x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)
EXAMPLE
Some solutions for n=1:
..0..0....2..2....2..2....0..0....2..2....2..2....2..2....2..2....1..1....0..0
..2..2....0..0....3..3....0..0....3..3....0..2....1..1....2..2....2..2....2..2
..0..0....0..1....0..0....1..1....2..2....1..3....3..3....1..2....0..0....1..1
..3..3....0..1....2..2....3..3....0..0....0..2....2..2....1..2....0..0....3..3
..3..3....1..2....3..3....3..3....2..3....1..3....2..2....1..2....0..1....3..3
..1..1....0..2....0..0....1..3....0..1....1..3....0..2....0..1....0..1....1..1
..3..3....0..2....1..1....0..2....0..2....0..3....0..2....1..2....1..2....0..3
CROSSREFS
Row 6 of A250877.
Sequence in context: A101767 A235220 A282163 * A233816 A050520 A049443
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 28 2014
STATUS
approved