login
A250886
G.f. A(x) satisfies: x = A(x) * (1 + A(x)) * (1 - 2*A(x)).
6
1, 1, 4, 15, 68, 322, 1608, 8283, 43780, 235950, 1291992, 7167030, 40192488, 227488900, 1297845008, 7455558675, 43088726148, 250362137590, 1461641062200, 8569690323810, 50438119336440, 297896152159260, 1765010252344560, 10487875429825950, 62485899131628648, 373198022044163532
OFFSET
1,3
LINKS
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
Thomas M. Richardson, The three 'R's and the Riordan dual, arXiv:1609.01193 [math.CO], 2016.
FORMULA
G.f.: Series_Reversion(x - x^2 - 2*x^3).
G.f. A(x) satisfies: x = -3*(1+A(x)) + 5*(1+A(x))^2 - 2*(1+A(x))^3.
a(n) ~ 2^(n - 3/2) * (10 + 7*sqrt(7))^(n - 1/2) / (7^(1/4) * sqrt(Pi) * n^(3/2) * 3^(2*n - 1)). - Vaclav Kotesovec, Aug 22 2017
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 15*x^4 + 68*x^5 + 322*x^6 + 1608*x^7 + ...
Related expansions.
A(x)^2 = x^2 + 2*x^3 + 9*x^4 + 38*x^5 + 182*x^6 + 900*x^7 + 4629*x^8 + ...
A(x)^3 = x^3 + 3*x^4 + 15*x^5 + 70*x^6 + 354*x^7 + 1827*x^8 + 9691*x^9 + ...
where x = A(x) - A(x)^2 - 2*A(x)^3.
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x - x^2 - 2*x^3, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Aug 22 2017 *)
PROG
(PARI) {a(n)=polcoeff(serreverse(x - x^2 - 2*x^3 + x^2*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A164310 A369486 A011967 * A055732 A125062 A039625
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 28 2014
STATUS
approved