login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164310 a(n) = 6*a(n-1) - 6*a(n-2) for n > 1; a(0) = 4, a(1) = 15. 1
4, 15, 66, 306, 1440, 6804, 32184, 152280, 720576, 3409776, 16135200, 76352544, 361304064, 1709709120, 8090430336, 38284327296, 181163381760, 857274326784, 4056665670144, 19196348060160, 90838094340096, 429850477679616 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Binomial transform of A077236. Inverse binomial transform of A083882 without initial 1.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (6,-6).

FORMULA

a(n) = ((4+sqrt(3))*(3+sqrt(3))^n + (4-sqrt(3))*(3-sqrt(3))^n)/2.

G.f.: (4-9*x)/(1-6*x+6*x^2).

E.g.f.: (4*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x))*exp(3*x). - G. C. Greubel, Sep 13 2017

MATHEMATICA

LinearRecurrence[{6, -6}, {4, 15}, 50] (* or *) CoefficientList[Series[(4 - 9*x)/(1 - 6*x + 6*x^2), {x, 0, 50}], x] (* G. C. Greubel, Sep 13 2017 *)

PROG

(MAGMA) [ n le 2 select 11*n-7 else 6*Self(n-1)-6*Self(n-2): n in [1..22] ];

(PARI) x='x+O('x^50); Vec((4-9*x)/(1-6*x+6*x^2)) \\ G. C. Greubel, Sep 13 2017

CROSSREFS

Cf. A077236, A083882.

Sequence in context: A318121 A097422 A102129 * A011967 A250886 A055732

Adjacent sequences:  A164307 A164308 A164309 * A164311 A164312 A164313

KEYWORD

nonn,easy

AUTHOR

Klaus Brockhaus, Aug 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 23:29 EST 2019. Contains 329910 sequences. (Running on oeis4.)