login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164310
a(n) = 6*a(n-1) - 6*a(n-2) for n > 1; a(0) = 4, a(1) = 15.
1
4, 15, 66, 306, 1440, 6804, 32184, 152280, 720576, 3409776, 16135200, 76352544, 361304064, 1709709120, 8090430336, 38284327296, 181163381760, 857274326784, 4056665670144, 19196348060160, 90838094340096, 429850477679616
OFFSET
0,1
COMMENTS
Binomial transform of A077236. Inverse binomial transform of A083882 without initial 1.
FORMULA
a(n) = ((4+sqrt(3))*(3+sqrt(3))^n + (4-sqrt(3))*(3-sqrt(3))^n)/2.
G.f.: (4-9*x)/(1-6*x+6*x^2).
E.g.f.: (4*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x))*exp(3*x). - G. C. Greubel, Sep 13 2017
MATHEMATICA
LinearRecurrence[{6, -6}, {4, 15}, 50] (* or *) CoefficientList[Series[(4 - 9*x)/(1 - 6*x + 6*x^2), {x, 0, 50}], x] (* G. C. Greubel, Sep 13 2017 *)
PROG
(Magma) [ n le 2 select 11*n-7 else 6*Self(n-1)-6*Self(n-2): n in [1..22] ];
(PARI) x='x+O('x^50); Vec((4-9*x)/(1-6*x+6*x^2)) \\ G. C. Greubel, Sep 13 2017
CROSSREFS
Sequence in context: A369229 A097422 A102129 * A369486 A011967 A250886
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Aug 12 2009
STATUS
approved