login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097422
Sum{k=1 to n} H(k) k!, where H(k) = sum{j=1 to k} 1/j.
3
0, 1, 4, 15, 65, 339, 2103, 15171, 124755, 1151331, 11779971, 132323811, 1618766691, 21421525731, 304887173091, 4644050174691, 75378332568291, 1298783923147491, 23675771981669091, 455240918799307491
OFFSET
0,3
COMMENTS
H(k) k! = s(k+1,2), where s() is an unsigned Stirling number of the first kind (A000254).
EXAMPLE
a(3) = 1*1 + (1 +1/2)*2 + (1 +1/2 +1/3)*6 = 15
MATHEMATICA
a[n_] := Sum[ HarmonicNumber[k]k!, {k, 1, n}]; Table[ a[n], {n, 0, 20}] (* Robert G. Wilson v, Aug 26 2004 *)
PROG
(PARI) hh(n)=sum(i=1, n, 1/i); ff(n)=sum(k=1, n, hh(k)*k!); for (i=1, 30, print1(ff(i), ", ")) (Bouayoun)
CROSSREFS
Cf. A000254.
Sequence in context: A318121 A357785 A369229 * A102129 A164310 A369486
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Aug 21 2004
EXTENSIONS
More terms from Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com) and Robert G. Wilson v, Aug 23 2004
STATUS
approved