|
|
A097422
|
|
Sum{k=1 to n} H(k) k!, where H(k) = sum{j=1 to k} 1/j.
|
|
3
|
|
|
0, 1, 4, 15, 65, 339, 2103, 15171, 124755, 1151331, 11779971, 132323811, 1618766691, 21421525731, 304887173091, 4644050174691, 75378332568291, 1298783923147491, 23675771981669091, 455240918799307491
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
H(k) k! = s(k+1,2), where s() is an unsigned Stirling number of the first kind (A000254).
|
|
LINKS
|
Table of n, a(n) for n=0..19.
|
|
EXAMPLE
|
a(3) = 1*1 + (1 +1/2)*2 + (1 +1/2 +1/3)*6 = 15
|
|
MATHEMATICA
|
a[n_] := Sum[ HarmonicNumber[k]k!, {k, 1, n}]; Table[ a[n], {n, 0, 20}] (* Robert G. Wilson v, Aug 26 2004 *)
|
|
PROG
|
(PARI) hh(n)=sum(i=1, n, 1/i); ff(n)=sum(k=1, n, hh(k)*k!); for (i=1, 30, print1(ff(i), ", ")) (Bouayoun)
|
|
CROSSREFS
|
Cf. A000254.
Sequence in context: A349202 A318121 A357785 * A102129 A164310 A011967
Adjacent sequences: A097419 A097420 A097421 * A097423 A097424 A097425
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Leroy Quet, Aug 21 2004
|
|
EXTENSIONS
|
More terms from Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com) and Robert G. Wilson v, Aug 23 2004
|
|
STATUS
|
approved
|
|
|
|