login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357785
a(n) = coefficient of x^n, n >= 1, in A(x) such that: A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ) * sqrt(1 - 4*x - 4*x^2).
2
1, 1, 4, 15, 65, 291, 1356, 6474, 31555, 156315, 784924, 3986534, 20444676, 105728100, 550735400, 2886924190, 15217019595, 80600822575, 428766983300, 2289637381800, 12268642450420, 65941128441080, 355396218177760, 1920215555772550, 10398415258863275
OFFSET
1,3
COMMENTS
Self convolution equals A357547.
Radius of convergence is r = (sqrt(41) - 5)/8, where r = r^2/(1 - 4*r - 4*r^2), with A(r) = sqrt(r).
Related identities:
(1) F(x)^2 = F( x^2/(1 - 4*x + 6*x^2) ) when F(x) = x/(1-2*x).
(2) C(x)^2 = C( x^2/(1 - 4*x + 4*x^2) ) when C(x) = (1-2*x - sqrt(1-4*x))/(2*x) is a g.f. of the Catalan numbers (A000108).
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) A(x) = -A( -x/(1 - 4*x) ) * sqrt(1 - 4*x).
(2) A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ) * sqrt(1 - 4*x - 4*x^2).
(3) A( x/(1 + 2*x) )^2 = A( x^2/(1 - 8*x^2) ) * sqrt(1 - 8*x^2) / (1 + 2*x).
(4) A( x/(1 + 2*x + 6*x^2) )^2 = A( x^2/(1 + 2^2*x^2 + 6^2*x^4) ) * sqrt(1 + 2^2*x^2 + 6^2*x^4) / (1 + 2*x + 6*x^2).
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 15*x^4 + 65*x^5 + 291*x^6 + 1356*x^7 + 6474*x^8 + 31555*x^9 + 156315*x^10 + 784924*x^11 + 3986534*x^12 + ...
such that
A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ) * sqrt(1 - 4*x - 4*x^2)
where
A(x)^2 = x^2 + 2*x^3 + 9*x^4 + 38*x^5 + 176*x^6 + 832*x^7 + 4039*x^8 + 19938*x^9 + 99861*x^10 + ... + A357547(n)*x^(n+1) + ...
PROG
(PARI) {a(n) = my(A=x); for(i=1, #binary(n+1),
A = sqrt( subst(A, x, x^2/(1 - 4*x - 4*x^2 +x*O(x^n)) )*sqrt(1 - 4*x - 4*x^2 +x*O(x^n)) )
); polcoeff(H=A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A233536 A349202 A318121 * A369229 A097422 A102129
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 03 2022
STATUS
approved