login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233536
E.g.f. satisfies: A(x) = exp( Integral (1 + x*A(x) + x^2*A(x)^2)/A(x) dx ).
1
1, 1, 1, 4, 15, 64, 355, 2424, 17521, 145280, 1360521, 13884320, 153669791, 1856114688, 24118429595, 335060591488, 4969674145185, 78372603670528, 1307723372124625, 23033289496343040, 427152897455369455, 8316956600840806400, 169633856906699985555, 3617390574964855445504, 80494223066221543513745
OFFSET
0,4
COMMENTS
Compare to: G(x) = exp( Integral (1 + 2*x*G(x) + x^2*G(x)^2)/G(x) dx ) holds when G(x) = 1/(1-x).
LINKS
FORMULA
E.g.f. satisfies: A'(x) = (1 - x^3*A(x)^3) / (1 - x*A(x)).
a(n) ~ n! * d^(n+3), where d = 0.9271503577507272... - Vaclav Kotesovec, Feb 24 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 15*x^4/4! + 64*x^5/5! + 355*x^6/6! +...
Related expansions:
A'(x) = 1 + x*A(x) + x^2*A(x)^2 = 1 + x + 4*x^2/2! + 15*x^3/3! + 64*x^4/4! + 355*x^5/5! + 2424*x^6/6! + 17521*x^7/7! +...
(1 + x*A(x) + x^2*A(x)^2)/A(x) = 1 + 3*x^2/2! + 2*x^3/3! + 23*x^4/4! + 36*x^5/5! + 673*x^6/6! + 1328*x^7/7! +...
log(A(x)) = x + 3*x^3/3! + 2*x^4/4! + 23*x^5/5! + 36*x^6/6! + 673*x^7/7! +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(intformal((1+x*A+x^2*A^2)/A+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A323789 A341922 A007526 * A349202 A318121 A357785
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 14 2013
STATUS
approved