login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233537
E.g.f. satisfies: A'(x) = (1 + x*A(x))*(1 + 2*x*A(x)).
0
1, 1, 3, 10, 51, 312, 2285, 19776, 193641, 2143872, 26332083, 355752000, 5245533579, 83760362496, 1440626560893, 26546198746368, 521773563403665, 10896758207668224, 240952051977165603, 5624033606823011328, 138178553037552463779, 3564697656160155156480, 96340383688983485779917
OFFSET
0,3
COMMENTS
Compare to: G'(x) = (1 + x*G(x))^2 holds when G(x) = 1/(1-x).
FORMULA
E.g.f.: 1/(-x + 1/(x + 2/(exp(x^2/2)*(2 + sqrt(2*Pi)*erf(x/sqrt(2)))))). - Vaclav Kotesovec, Dec 20 2013
Limit n->infinity (a(n)/n!)^(1/n) = 1.22846523024810212537857688314... - Vaclav Kotesovec, Dec 20 2013
a(n) ~ n! * c * (1/r)^n, where r = 0.8140238529974828444777... is the root of the equation erf(r/sqrt(2)) = sqrt(2/Pi)*(r*exp(-r^2/2)/(1-r^2)-1) and c = 0.9269549143870045466948... - Vaclav Kotesovec, Dec 20 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 51*x^4/4! + 312*x^5/5! + 2285*x^6/6! +...
where
A'(x) = 1 + 3*x*A(x) + 2*x^2*A(x)^2 = 1 + 3*x + 10*x^2/2! + 51*x^3/3! + 312*x^4/4! + 2285*x^5/5! +...
MATHEMATICA
CoefficientList[Series[1/(-x + 1/(x + 2/(E^(x^2/2)*(2 + Sqrt[2*Pi]* Erf[x/Sqrt[2]])))), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 20 2013 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal((1+x*A)*(1+2*x*A)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A048175 A288953 A192482 * A020132 A330042 A241459
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 15 2013
STATUS
approved