Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 20 2013 18:36:17
%S 1,1,3,10,51,312,2285,19776,193641,2143872,26332083,355752000,
%T 5245533579,83760362496,1440626560893,26546198746368,521773563403665,
%U 10896758207668224,240952051977165603,5624033606823011328,138178553037552463779,3564697656160155156480,96340383688983485779917
%N E.g.f. satisfies: A'(x) = (1 + x*A(x))*(1 + 2*x*A(x)).
%C Compare to: G'(x) = (1 + x*G(x))^2 holds when G(x) = 1/(1-x).
%F E.g.f.: 1/(-x + 1/(x + 2/(exp(x^2/2)*(2 + sqrt(2*Pi)*erf(x/sqrt(2)))))). - _Vaclav Kotesovec_, Dec 20 2013
%F Limit n->infinity (a(n)/n!)^(1/n) = 1.22846523024810212537857688314... - _Vaclav Kotesovec_, Dec 20 2013
%F a(n) ~ n! * c * (1/r)^n, where r = 0.8140238529974828444777... is the root of the equation erf(r/sqrt(2)) = sqrt(2/Pi)*(r*exp(-r^2/2)/(1-r^2)-1) and c = 0.9269549143870045466948... - _Vaclav Kotesovec_, Dec 20 2013
%e E.g.f.: A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 51*x^4/4! + 312*x^5/5! + 2285*x^6/6! +...
%e where
%e A'(x) = 1 + 3*x*A(x) + 2*x^2*A(x)^2 = 1 + 3*x + 10*x^2/2! + 51*x^3/3! + 312*x^4/4! + 2285*x^5/5! +...
%t CoefficientList[Series[1/(-x + 1/(x + 2/(E^(x^2/2)*(2 + Sqrt[2*Pi]* Erf[x/Sqrt[2]])))), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Dec 20 2013 *)
%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal((1+x*A)*(1+2*x*A)+x*O(x^n))); n!*polcoeff(A, n)}
%o for(n=0, 30, print1(a(n), ", "))
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 15 2013