login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357788
a(n) = coefficient of x^(2*n) in C(x) defined by: C(x) + i*S(x) = Sum_{n=-oo..+oo} i^n * (2*x)^(n^2) * F(x)^n, where F(x) is the g.f. of A357787 such that C(x)^2 + S(x)^2 = 1.
5
1, 0, -32, -256, -2048, -12288, -32768, 131072, 3276800, 28311552, 125829120, -285212672, -11274289152, -110326972416, -511101108224, 2052994367488, 66383014526976, 707123415613440, 4088396548931584, -1608585511436288, -341992096703447040, -4383726471663845376
OFFSET
0,3
LINKS
FORMULA
Given g.f. C(x) = Sum_{n>=0} a(n)*x^(2*n) and related functions S(x) and F(x) (g.f. of A357787) satisfy the following.
(1) C(x)^2 + S(x)^2 = 1.
(2) C(x) + i*S(x) = Sum_{n=-oo..+oo} i^n * (2*x)^(n^2) * F(x)^n.
(3) 1/F(x) = F(-x).
(4) C(x) = 1 + Sum_{n>=1} (-1)^n * (2*x)^(4*n^2) * (F(x)^(2*n) + F(-x)^(2*n)).
(5) S(x) = Sum_{n>=0} (-1)^n * (2*x)^((2*n+1)^2) * (F(x)^(2*n+1) - F(-x)^(2*n+1)).
(6) C(x) + i*S(x) = Product_{n>=1} (1 + i*(2*x)^(2*n-1)*F(x)) * (1 - i*(2*x)^(2*n-1)/F(x)) * (1 - (2*x)^(2*n)), due to the Jacobi triple product identity.
EXAMPLE
G.f.: C(x) = 1 - 32*x^4 - 256*x^6 - 2048*x^8 - 12288*x^10 - 32768*x^12 + 131072*x^14 + 3276800*x^16 + 28311552*x^18 + 125829120*x^20 - 285212672*x^22 - 11274289152*x^24 - 110326972416*x^26 - 511101108224*x^28 + 2052994367488*x^30 + 66383014526976*x^32 + ...
such that C(x) and S(x) = sqrt(1 - C(x)^2) form the real and imaginary parts of the doubly infinite sum
C(x) + i*S(x) = Sum_{n=-oo..+oo} i^n * (2*x)^(n^2) * F(x)^n
where F(x) is the g.f. of A357787 and normalizes the given theta series so that C(x)^2 + S(x)^2 = 1.
Explicitly,
C(x) = 1 - (2*x)^4*(F(x)^2 + F(-x)^2) + (2*x)^16*(F(x)^4 + F(-x)^4) - (2*x)^36*(F(x)^6 + F(-x)^6) + (2*x)^64*(F(x)^8 + F(-x)^8) + ... + (-1)^n * (2*x)^(4*n^2) * (F(x)^(2*n) + F(-x)^(2*n)) + ...
S(x) = (2*x)*(F(x) - F(-x)) - (2*x)^9*(F(x)^3 - F(-x)^3) + (2*x)^25*(F(x)^5 - F(-x)^5) - (2*x)^49*(F(x)^7 - F(-x)^7) + ... + (-1)^n * (2*x)^((2*n+1)^2) * (F(x)^(2*n+1) - F(-x)^(2*n+1)) + ...
where
F(x) = 1 + 2*x + 2*x^2 + 8*x^3 + 14*x^4 + 32*x^5 + 68*x^6 + 22*x^8 - 768*x^9 - 2020*x^10 - 9216*x^11 - 23156*x^12 - 45056*x^13 - 115320*x^14 + 32768*x^15 + ... + A357787(n) * x^n + ...
S(x) = 8*x^2 + 32*x^4 + 128*x^6 - 9216*x^10 - 94208*x^12 - 671744*x^14 - 3014656*x^16 + 1245184*x^18 + 171704320*x^20 + 1756364800*x^22 + 8338276352*x^24 + ... + A357789(n)*x^(2*n) + ...
RELATED SERIES.
C(x)^2 = 1 - 64*x^4 - 512*x^6 - 3072*x^8 - 8192*x^10 + 131072*x^12 + 2097152*x^14 + 19136512*x^16 + 115343360*x^18 + 260046848*x^20 - 3791650816*x^22 - 60666413056*x^24 - 471909531648*x^26 - 1563368095744*x^28 + ...
The logarithm of C(x) + i*S(x) is an imaginary even function that begins:
log(C(x) + i*S(x)) = i*(16*x^2/2 + 128*x^4/4 + 1280*x^6/6 + 8192*x^8/8 + 14336*x^10/10 - 81920*x^12/12 - 2129920*x^14/14 - 12582912*x^16/16 + 36044800*x^18/18 + 1722810368*x^20/20 + 20768096256*x^22/22 + ...)
because C(x)^2 + S(x)^2 = 1.
Also observe that the following roots of C(x) + i*S(x) are integer series:
(C(x) + i*S(x))^(1/2) = 1 + 4*i*x^2 + (-8 + 16*i)*x^4 + (-64 + 96*i)*x^6 + (-544 + 384*i)*x^8 + (-3584 - 640*i)*x^10 + (-14592 - 14848*i)*x^12 + (-30720 - 148480*i)*x^14 + (325120 - 757760*i)*x^16 + (3948544 + 104448*i)*x^18 + (17731584 + 47472640*i)*x^20 + (-87916544 + 533676032*i)*x^22 + ...
(C(x) + i*S(x))^(1/4) = 1 + 2*i*x^2 + (-2 + 8*i)*x^4 + (-16 + 52*i)*x^6 + (-138 + 240*i)*x^8 + (-928 + 188*i)*x^10 + (-4052 - 3152*i)*x^12 + (-11744 - 47320*i)*x^14 + (48806 - 244896*i)*x^16 + (770752 + 362860*i)*x^18 + (3352836 + 21880112*i)*x^20 + (-25037664 + 242360920*i)*x^22 + ...
PROG
(PARI) {a(n) = my(F=[1, 2], THETA=1); for(i=1, 2*n, F = concat(F, 0); m=sqrtint(#F+9);
THETA = sum(n=-m, m, I^n * (2*x)^(n^2) * truncate(Ser(F))^n + x*O(x^(#F+2)));
F[#F] = -polcoeff( (real(THETA)^2 + imag(THETA)^2)/64, #F+2)); polcoeff(real(THETA), 2*n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 05 2022
STATUS
approved