login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357791
a(n) = coefficient of x^n in A(x) such that: x = Sum_{n=-oo..+oo} x^n * (1 - x^n * A(-x)^n)^n.
3
1, 1, 2, 5, 21, 88, 377, 1654, 7424, 34000, 158274, 746525, 3559456, 17128250, 83078147, 405754479, 1993777057, 9849668910, 48892589632, 243739139810, 1219789105228, 6125813250402, 30862120708266, 155937956267432, 790019313067409, 4012282344217699, 20423575546661000
OFFSET
0,3
COMMENTS
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following.
(1) x = Sum_{n=-oo..+oo} x^n * (1 - x^n * A(-x)^n)^n.
(2) x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(-x)^(n^2) / (1 - x^n*A(-x)^n)^n.
a(n) ~ c * d^n / n^(3/2), where d = 5.390297559554269719991046... and c = 0.267652299887938085649... - Vaclav Kotesovec, Dec 25 2022
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 21*x^4 + 88*x^5 + 377*x^6 + 1654*x^7 + 7424*x^8 + 34000*x^9 + 158274*x^10 + 746525*x^11 + 3559456*x^12 + ...
SPECIFIC VALUES.
A(x) = 3/2 at x = 0.1850570503493984408934312903280642188437354418734...
A(1/6) = 1.3085832721715442420948608003299892250459754159045...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(x + sum(n=-#A, #A, (-x)^n * (1 - (-x)^n * Ser(A)^n )^n ), #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A228385 A152801 A062297 * A047104 A319850 A270597
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 24 2022
STATUS
approved