login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357793
a(n) = coefficient of x^n in A(x) = Sum_{n>=0} x^n*F(x)^n * (1 - x^n*F(x)^n)^n, where F(x) = 1 + x*F(x)^3 is a g.f. of A001764.
2
1, 1, 1, 4, 14, 64, 314, 1633, 8826, 49107, 279349, 1617290, 9498099, 56445918, 338817460, 2051182532, 12509647159, 76785827812, 474000090118, 2940761033970, 18327028477625, 114677403429121, 720191795608082, 4537925593859911, 28679991910774479, 181761824439041725
OFFSET
0,4
COMMENTS
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (1 - x^n*F(x)^n)^n / (1 - x*F(x)^2)^n, where F(x) = 1 + x*F(x)^3.
LINKS
FORMULA
Given F(x) = 1 + x*F(x)^3, g.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) A(x) = Sum_{n>=0} x^n * F(x)^n * (1 - x^n*F(x)^n)^n.
(2) A(x) = Sum_{n>=1} (-1)^(n-1) * (x*F(x))^(n*(n-1)) / (1 - x^n*F(x)^n)^n.
(3) A(x) = Sum_{n>=0} x^n * (1 - x^n*F(x)^n)^n / (1 - x*F(x)^2)^n.
(4) A(x) = Sum_{n>=1} (-1)^(n-1) * x^(n*(n-1)) * F(x)^(n^2) * (1 - x*F(x)^2)^n / (1 - x^n*F(x)^n)^n.
a(n) ~ c * 3^(3*n) / (n^(3/2) * 2^(2*n)), where c = 0.0403028056146458801802487899052088995113692232406693619.... - Vaclav Kotesovec, Mar 14 2023
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 14*x^4 + 64*x^5 + 314*x^6 + 1633*x^7 + 8826*x^8 + 49107*x^9 + 279349*x^10 + 1617290*x^11 + 9498099*x^12 + ...
where
F(x) = 1 + x*F(x)*(1 - x*F(x)) + x^2*F(x)^2*(1 - x^2*F(x)^2) + x^3*F(x)^3*(1 - x^3*F(x)^3) + x^4*F(x)^4*(1 - x^4*F(x)^4) + ... + x^n * F(x)^n * (1 - x^n*F(x)^n)^n + ...
also,
F(x) = 1/(1 - x*F(x)) - (x*F(x))^2/(1 - x^2*F(x)^2)^2 + (x*F(x))^6/(1 - x^3*F(x)^3)^3 - (x*F(x))^12/(1 - x^4*F(x)^4)^4 + (x*F(x))^20/(1 - x^5*F(x)^4)^5 +- ... + (-1)^(n-1) * (x*F(x))^(n*(n-1)) / (1 - x^n*F(x)^n)^n + ...
Where F(x) = 1 + x*F(x)^3 begins
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + 43263*x^8 + 246675*x^9 + 1430715*x^10 + ... + A001764(n)*x^n + ...
SPECIFIC VALUES.
The radius of convergence of the power series A(x) equals 4/27.
The power series A(x) converges at x = 4/27 to
A(4/27) = 1.2311920996301390036800654138630946234233891541082821783156...
which equals the following sums:
(1) A(4/27) = Sum_{n>=0} 2^n * (9^n - 2^n)^n / 9^(n*(n+1)),
(2) A(4/27) = Sum_{n>=1} (-1)^(n-1) * 2^(n*(n-1)) * 9^n / (9^n - 2^n)^n.
PROG
(PARI) {a(n) = my(A=1, F = (serreverse(x/(1+x + O(x^(n+2)))^3)/x)^(1/3));
A = sum(m=0, n, x^m * F^m * (1 - x^m*F^m)^m); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1, F = (serreverse(x/(1+x + O(x^(n+3)))^3)/x)^(1/3));
A = sum(m=1, n+1, (-1)^(m-1) * (x*F)^(m*(m-1)) / (1 - x^m*F^m)^m); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A322206 A149495 A137956 * A341682 A242764 A356004
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 20 2022
STATUS
approved