login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357547
a(n) = coefficient of x^n in A(x) such that: A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ).
4
1, 2, 9, 38, 176, 832, 4039, 19938, 99861, 506042, 2590099, 13370898, 69540016, 364028992, 1916585714, 10142059868, 53911982971, 287736310102, 1541243386819, 8282387269058, 44638363790176, 241216694913632, 1306608966475854, 7092980525443588, 38581011402034156
OFFSET
1,2
COMMENTS
Radius of convergence is r = (sqrt(41) - 5)/8, where r = r^2/(1 - 4*r - 4*r^2), with A(r) = 1.
Related identities:
(1) F(x)^2 = F( x^2/(1 - 4*x + 6*x^2) ) when F(x) = x/(1-2*x).
(2) C(x)^2 = C( x^2/(1 - 4*x + 4*x^2) ) when C(x) = (1-2*x - sqrt(1-4*x))/(2*x) is a g.f. of the Catalan numbers (A000108).
More generally, if
F(x)^2 = F( x^2/(1 - 2*a*x + 2*(a^2 - b)*x^2) ),
then
F( x/(1 + a*x + b*x^2) )^2 = F( x^2/(1 + a^2*x^2 + b^2*x^4) );
here, a = 2, b = 6.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) A( x/(1 + 2*x + 6*x^2) )^2 = A( x^2/(1 + 2^2*x^2 + 6^2*x^4) ).
(2) A(x) = -A( -x/(1 - 4*x) ).
(3.a) A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ).
(3.b) A(x)^2 = -A( -x^2/(1 - 4*x - 8*x^2) ).
(4.a) A( x/(1 + 2*x) )^2 = A( x^2/(1 - 8*x^2) ).
(4.b) A( x/(1 + 2*x) )^2 = -A( -x^2/(1 - 12*x^2) ).
(4.c) A( x/(1 + 2*x) )^2 = A( -x/(1 - 2*x) )^2.
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 9*x^3 + 38*x^4 + 176*x^5 + 832*x^6 + 4039*x^7 + 19938*x^8 + 99861*x^9 + 506042*x^10 + 2590099*x^11 + 13370898*x^12 + ...
where A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ).
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 22*x^4 + 112*x^5 + 585*x^6 + 3052*x^7 + 16018*x^8 + 84384*x^9 + 446384*x^10 + 2370240*x^11 + 12631104*x^12 + ...
(x*A(x))^(1/2) = x + x^2 + 4*x^3 + 15*x^4 + 65*x^5 + 291*x^6 + 1356*x^7 + 6474*x^8 + 31555*x^9 + 156315*x^10 + 784924*x^11 + ... + A357785(n)*x^n + ...
x/Series_Reversion(A(x)) = 1 + 2*x + 5*x^2 - 10*x^4 + 50*x^6 - 305*x^8 + 2025*x^10 - 14400*x^12 + 107500*x^14 - 829415*x^16 + 6559700*x^18 - 52908950*x^20 + ...
PROG
(PARI) {a(n) = my(A=x); for(i=1, #binary(n+1),
A = sqrt( subst(A, x, x^2/(1 - 4*x - 4*x^2 +x*O(x^n)) ) )
); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 01 2022
STATUS
approved