login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = coefficient of x^n in A(x) such that: A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ).
4

%I #18 Dec 04 2022 07:34:08

%S 1,2,9,38,176,832,4039,19938,99861,506042,2590099,13370898,69540016,

%T 364028992,1916585714,10142059868,53911982971,287736310102,

%U 1541243386819,8282387269058,44638363790176,241216694913632,1306608966475854,7092980525443588,38581011402034156

%N a(n) = coefficient of x^n in A(x) such that: A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ).

%C Radius of convergence is r = (sqrt(41) - 5)/8, where r = r^2/(1 - 4*r - 4*r^2), with A(r) = 1.

%C Related identities:

%C (1) F(x)^2 = F( x^2/(1 - 4*x + 6*x^2) ) when F(x) = x/(1-2*x).

%C (2) C(x)^2 = C( x^2/(1 - 4*x + 4*x^2) ) when C(x) = (1-2*x - sqrt(1-4*x))/(2*x) is a g.f. of the Catalan numbers (A000108).

%C More generally, if

%C F(x)^2 = F( x^2/(1 - 2*a*x + 2*(a^2 - b)*x^2) ),

%C then

%C F( x/(1 + a*x + b*x^2) )^2 = F( x^2/(1 + a^2*x^2 + b^2*x^4) );

%C here, a = 2, b = 6.

%H Paul D. Hanna, <a href="/A357547/b357547.txt">Table of n, a(n) for n = 1..520</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:

%F (1) A( x/(1 + 2*x + 6*x^2) )^2 = A( x^2/(1 + 2^2*x^2 + 6^2*x^4) ).

%F (2) A(x) = -A( -x/(1 - 4*x) ).

%F (3.a) A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ).

%F (3.b) A(x)^2 = -A( -x^2/(1 - 4*x - 8*x^2) ).

%F (4.a) A( x/(1 + 2*x) )^2 = A( x^2/(1 - 8*x^2) ).

%F (4.b) A( x/(1 + 2*x) )^2 = -A( -x^2/(1 - 12*x^2) ).

%F (4.c) A( x/(1 + 2*x) )^2 = A( -x/(1 - 2*x) )^2.

%e G.f.: A(x) = x + 2*x^2 + 9*x^3 + 38*x^4 + 176*x^5 + 832*x^6 + 4039*x^7 + 19938*x^8 + 99861*x^9 + 506042*x^10 + 2590099*x^11 + 13370898*x^12 + ...

%e where A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ).

%e RELATED SERIES.

%e A(x)^2 = x^2 + 4*x^3 + 22*x^4 + 112*x^5 + 585*x^6 + 3052*x^7 + 16018*x^8 + 84384*x^9 + 446384*x^10 + 2370240*x^11 + 12631104*x^12 + ...

%e (x*A(x))^(1/2) = x + x^2 + 4*x^3 + 15*x^4 + 65*x^5 + 291*x^6 + 1356*x^7 + 6474*x^8 + 31555*x^9 + 156315*x^10 + 784924*x^11 + ... + A357785(n)*x^n + ...

%e x/Series_Reversion(A(x)) = 1 + 2*x + 5*x^2 - 10*x^4 + 50*x^6 - 305*x^8 + 2025*x^10 - 14400*x^12 + 107500*x^14 - 829415*x^16 + 6559700*x^18 - 52908950*x^20 + ...

%o (PARI) {a(n) = my(A=x); for(i=1, #binary(n+1),

%o A = sqrt( subst(A, x, x^2/(1 - 4*x - 4*x^2 +x*O(x^n)) ) )

%o ); polcoeff(A, n)}

%o for(n=1, 40, print1(a(n), ", "))

%Y Cf. A357785, A264224, A274483, A274484, A357548.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Dec 01 2022