login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274484
G.f. satisfies: A(x)^2 = A( x^2/(1 - 4*x + 2*x^2) ).
6
1, 2, 6, 20, 71, 262, 994, 3852, 15183, 60686, 245410, 1002300, 4128448, 17129920, 71529800, 300355184, 1267386163, 5371101382, 22850230642, 97546995260, 417717017392, 1793765580704, 7722405668232, 33323153856880, 144099312039391, 624347587536782, 2710036186345914, 11782865084403212, 51310167663855675, 223762749750806942, 977155903597684074, 4272633455348970588, 18704696346822470087, 81978422471165944654
OFFSET
1,2
COMMENTS
Radius of convergence of g.f. A(x) is r = (5 - sqrt(17))/4 where r = r^2/(1-4*r+2*r^2) with A(r) = 1.
Compare g.f. with the identities:
(1) F(x)^2 = F( x^2/(1 - 4*x + 6*x^2) ) when F(x) = x/(1-2*x).
(2) C(x)^2 = C( x^2/(1 - 4*x + 4*x^2) ) when C(x) = (1-2*x - sqrt(1-4*x))/(2*x) is a g.f. of the Catalan numbers (A000108).
More generally, if
F(x)^2 = F( x^2/(1 - 2*a*x + 2*(a^2 - b)*x^2) ),
then
F( x/(1 + a*x + b*x^2) )^2 = F( x^2/(1 + a^2*x^2 + b^2*x^4) ).
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = -A( -x/(1 - 4*x) ). - Paul D. Hanna, Nov 30 2022
(2) A(x)^2 = A( x^2/(1 - 4*x + 2*x^2) ).
(3) A( x/(1 + 2*x + 3*x^2) )^2 = A( x^2/(1 + 4*x^2 + 9*x^4) ).
(4) A( x/(1 + 2*x) )^2 = x * A( x/(1 - 2*x) ).
(5) A( x/(1 - 2*x) )^2 = A( x^2/(1 - 8*x + 14*x^2) ).
Let G(x) denote the g.f. of A107087, where G(x)^2 = G(x^2) + 4*x, then g.f. A(x) satisfies:
(6) A(x) = x/(1-2*x) * G( A(x)^2 ),
(7) A(x) = Series_Reversion( x/(G(x)^2 - 2*x) ),
(8) G(x) = sqrt( x/Series_Reversion(A(x)) + 2*x ),
(9) G(x^2) = x/Series_Reversion(A(x)) - 2*x,
(10) A( x/(G(x)^2 - 2*x) ) = x,
(11) A( x/(G(x^2) + 2*x) ) = x,
(12) A(x)^2/(G(A(x)^4) + 2*A(x)^2) = x^2/(1 - 4*x + 2*x^2).
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 6*x^3 + 20*x^4 + 71*x^5 + 262*x^6 + 994*x^7 + 3852*x^8 + 15183*x^9 + 60686*x^10 + 245410*x^11 + 1002300*x^12 +...
such that A( x^2/(1-4*x+2*x^2) ) = A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 16*x^4 + 64*x^5 + 258*x^6 + 1048*x^7 + 4288*x^8 + 17664*x^9 + 73223*x^10 + 305292*x^11 + 1279632*x^12 + 5389632*x^13 + 22800926*x^14 +...
The g.f. of A260650, F(x), begins:
A( x/(1 - 2*x) ) = x + 4*x^2 + 18*x^3 + 88*x^4 + 455*x^5 + 2444*x^6 + 13486*x^7 + 75912*x^8 + 433935*x^9 + 2511388*x^10 +...
and satisfies: F(x)^2 = F( x^2/(1 - 4*x)^2 ).
The series reversion of the g.f. A(x) begins:
Series_Reversion(A(x)) = x - 2*x^2 + 2*x^3 - 3*x^5 + 4*x^6 - 2*x^7 + 2*x^9 - 10*x^10 + 18*x^11 - 39*x^13 + 28*x^14 + 40*x^15 - 142*x^17 - 84*x^18 + 620*x^19 - 1735*x^21 + 260*x^22 + 4532*x^23 +...
which is related to A107087 by:
x/Series_Reversion(A(x)) = 1 + 2*x + 2*x^2 - x^4 + 2*x^6 - 5*x^8 + 12*x^10 - 30*x^12 + 82*x^14 - 233*x^16 + 668*x^18 - 1949*x^20 +...+ A107087(n)*x^(2*n) +...
The g.f. G(x) of A107087 begins:
G(x) = 1 + 2*x - x^2 + 2*x^3 - 5*x^4 + 12*x^5 - 30*x^6 + 82*x^7 - 233*x^8 + 668*x^9 - 1949*x^10 + 5802*x^11 - 17503*x^12 +...
where G(x)^2 = G(x^2) + 4*x.
Also, we have A(x/(1 + 2*x + 3*x^2))^2 = A(x^2/(1 + 4*x^2 + 9*x^4)), where the series begin:
A(x/(1 + 2*x + 3*x^2)) = x - x^3 - 2*x^5 + 6*x^7 - x^9 - 3*x^11 - 30*x^13 - 66*x^15 + 715*x^17 - 747*x^19 - 4028*x^21 + 9424*x^23 + 8790*x^25 +...
A(x^2/(1 + 4*x^2 + 9*x^4)) = x^2 - 2*x^4 - 3*x^6 + 16*x^8 - 10*x^10 - 28*x^12 - 14*x^14 - 72*x^16 + 1647*x^18 - 3014*x^20 - 10145*x^22 + 38784*x^24 +...
which is equal to A(x/(1 + 2*x + 3*x^2))^2.
PROG
(PARI) {a(n) = my(A=x); for(i=1, #binary(n+1), A = sqrt( subst(A, x, x^2/(1-4*x+2*x^2 +x*O(x^n)) ) ) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 27 2016
STATUS
approved