OFFSET
0,3
COMMENTS
A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of steps in it.
LINKS
E. Deutsch, E. Munarini, and S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
Helmut Prodinger, Skew Dyck paths without up-down-left, arXiv:2203.10516 [math.CO], 2022.
FORMULA
a(n) = A128728(n,0).
G.f.: G = G(z) satisfies z^2*G^3 - z(2-z)G^2 + (1 - z^2)G - 1 + z + z^2 = 0.
D-finite with recurrence 4*n*(n+1)*a(n) -32*n*(n-1)*a(n-1) +3*(23*n^2-78*n+59)*a(n-2) -2*(n-3)*(10*n-47)*a(n-3) -44*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 22 2022
EXAMPLE
a(2)=2 because we have UDUD and UUDD (UUDL does not qualify).
MAPLE
eq:=z^2*G^3-z*(2-z)*G^2+(1-z^2)*G-1+z+z^2=0: G:=RootOf(eq, G): Gser:=series(G, z=0, 30): seq(coeff(Gser, z, n), n=0..27);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 31 2007
STATUS
approved