login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128730
Number of UDL's in all skew Dyck paths of semilength n.
3
0, 0, 1, 4, 16, 68, 301, 1366, 6301, 29400, 138355, 655424, 3121438, 14930540, 71675839, 345148892, 1666432816, 8064278288, 39103576699, 189949958332, 924163714216, 4502711570988, 21966152501239, 107284324830302
OFFSET
0,4
COMMENTS
A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of steps in it.
LINKS
E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
FORMULA
a(n) = Sum_{k>=0} k*A128728(n,k).
G.f.: 2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)).
a(n) ~ 5^(n-1/2)/(6*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence: +2*(n-1)*(3*n-8)*a(n) +(-39*n^2+161*n-148)*a(n-1) +(48*n^2-215*n+220)*a(n-2) -5*(3*n-5)*(n-3)*a(n-3)=0. - R. J. Mathar, Jun 17 2016
For n >= 2, a(n) = Sum_{k=1..n-1} binomial(n,k)*A014300(k). - Jianing Song, Apr 20 2019
EXAMPLE
a(3) = 4 because we have UDUUDL, UUUDLD, UUDUDL and UUUDLL (the other six skew Dyck paths of semilength 3 are the five Dyck paths and UUUDDL).
MAPLE
G:=2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)): Gser:=series(G, z=0, 30): seq(coeff(Gser, z, n), n=0..26);
MATHEMATICA
CoefficientList[Series[2*x^2/(1-6*x+5*x^2+(1+x)*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(PARI) z='z+O('z^50); concat([0, 0], Vec(2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)))) \\ G. C. Greubel, Mar 19 2017
CROSSREFS
Sequence in context: A290912 A089979 A179191 * A151243 A006319 A202020
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 31 2007
STATUS
approved