login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290912
a(n) = (1/6)*A290911(n).
3
0, 1, 4, 16, 68, 287, 1208, 5088, 21432, 90273, 380236, 1601584, 6745996, 28414655, 119684720, 504121280, 2123397744, 8943915201, 37672461204, 158679314512, 668369521108, 2815224014047, 11857940853032, 49946562182048, 210378775263272, 886131640451169
OFFSET
0,3
FORMULA
G.f.: x/(1 - 4 x - 4 x^3 + x^4). [Corrected by A.H.M. Smeets, Sep 12 2018]
a(n) = 4*a(n-1) + 4*a(n-3) - a(n-4).
a(n) = (1/6)*A290911(n) for n >= 0.
MAPLE
seq(coeff(series(x/(x^4-4*x^3-4*x+1), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Sep 12 2018
MATHEMATICA
z = 60; s = x/(1 - x)^2; p = 1 - 6 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290911 *)
u/6 (* A290912 *)
LinearRecurrence[{4, 0, 4, -1}, {0, 1, 4, 16}, 30] (* Harvey P. Dale, Sep 18 2022 *)
PROG
(PARI) x='x+O('x^33); concat(0, Vec(x/(1-4*x-4*x^3+x^4))) \\ Altug Alkan, Sep 12 2018
(GAP) a:=[0, 1, 4, 16];; for n in [5..30] do a[n]:=4*a[n-1]+4*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
(Magma) I:=[0, 1, 4, 16]; [n le 4 select I[n] else 4*Self(n-1)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Sep 13 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 18 2017
STATUS
approved