The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290910 a(n) = (1/5)*A290909(n), n>= 0. 3
 0, 1, 4, 15, 60, 240, 956, 3809, 15180, 60495, 241080, 960736, 3828664, 15257745, 60804180, 242312895, 965649716, 3848244944, 15335777460, 61115150865, 243552156060, 970588338271, 3867926023024, 15414209227200, 61427712082800, 244797754857825 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4, -1, 4, -1) FORMULA G.f.: x/(1 - 4 x + x^2 - 4 x^3 + x^4). a(n) = 4*a(n-1) - a(n-2) + 4*a(n-3) - a(n-4). a(n) = (1/5)*A290909(n) for n >= 0. MATHEMATICA z = 60; s = x/(1 - x)^2; p = 1 - 5 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290909 *) u/5 (* A290910 *) LinearRecurrence[{4, -1, 4, -1}, {0, 1, 4, 15}, 30] (* Harvey P. Dale, Feb 19 2018 *) PROG (PARI) concat([0], Vec(1/(1 - 4*x + x^2 - 4*x^3 + x^4) + O(x^30))) \\ Andrew Howroyd, Feb 26 2018 CROSSREFS Cf. A000027, A290890, A290909. Sequence in context: A219312 A271752 A291244 * A369838 A070071 A285363 Adjacent sequences: A290907 A290908 A290909 * A290911 A290912 A290913 KEYWORD nonn,easy AUTHOR Clark Kimberling, Aug 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 23:30 EDT 2024. Contains 373362 sequences. (Running on oeis4.)