The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285363 Sum of the entries in the first blocks of all set partitions of [n]. 4
 1, 4, 15, 60, 262, 1243, 6358, 34835, 203307, 1257913, 8216945, 56463487, 406868167, 3065920770, 24099977863, 197179545722, 1675846476148, 14769104672839, 134745258569108, 1270767279092285, 12371426210292311, 124173909409948575, 1283498833928098171 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..575 Wikipedia, Partition of a set FORMULA a(n) = A285362(n,1). EXAMPLE a(3) = 15 because the sum of the entries in the first blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 6+3+4+1+1 = 15. MAPLE a:= proc(h) option remember; local b; b:= proc(n, m) option remember; `if`(n=0, [1, 0], add((p-> `if`(j=1, p+ [0, (h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1)) end: b(h, 0)[2] end: seq(a(n), n=1..30); MATHEMATICA a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[If[j == 1, # + {0, (h - n + 1)*#[[1]]}, #]&[b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, May 20 2018, translated from Maple *) CROSSREFS Column k=1 of A285362. Cf. A284816, A285424. Sequence in context: A290910 A369838 A070071 * A356942 A151484 A275871 Adjacent sequences: A285360 A285361 A285362 * A285364 A285365 A285366 KEYWORD nonn AUTHOR Alois P. Heinz, Apr 17 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 18:18 EDT 2024. Contains 372880 sequences. (Running on oeis4.)