login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285364
Sum of the entries in the second blocks of all set partitions of [n].
2
2, 12, 58, 273, 1329, 6839, 37423, 217606, 1340597, 8719806, 59680387, 428481322, 3218109788, 25220647760, 205790862332, 1744755841379, 15342274425585, 139692065365753, 1314995731359189, 12780466391685166, 128081591768679823, 1322011886920066940
OFFSET
2,1
LINKS
FORMULA
a(n) = A285362(n,2).
EXAMPLE
a(3) = 12 because the sum of the entries in the second blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 0+3+2+5+2 = 12.
MAPLE
a:= proc(h) option remember; local b; b:=
proc(n, m) option remember;
`if`(n=0, [1, 0], add((p-> `if`(j=2, p+ [0,
(h-n+1)*p[1]], p))(b(n-1, max(m, j))), j=1..m+1))
end: b(h, 0)[2]
end:
seq(a(n), n=2..30);
MATHEMATICA
a[h_] := a[h] = Module[{b}, b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j == 2, p + {0, (h - n + 1)*p[[1]]}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]]; b[h, 0][[2]]];
Table[a[n], {n, 2, 30}] (* Jean-François Alcover, May 27 2018, from Maple *)
CROSSREFS
Column k=2 of A285362.
Sequence in context: A100103 A281028 A054145 * A282435 A001758 A037133
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 17 2017
STATUS
approved