login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100103
a(n) = 2^(2*n) - 2*n.
0
1, 2, 12, 58, 248, 1014, 4084, 16370, 65520, 262126, 1048556, 4194282, 16777192, 67108838, 268435428, 1073741794, 4294967264, 17179869150, 68719476700, 274877906906, 1099511627736, 4398046511062, 17592186044372, 70368744177618
OFFSET
0,2
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
FORMULA
From Colin Barker, May 29 2012: (Start)
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3).
G.f.: (1 - 4*x + 9*x^2)/((1 - x)^2*(1 - 4*x)). (End)
MAPLE
seq(2^(2*n)-2*n, n=0..20);
MATHEMATICA
Table[2^(2n)-2n, {n, 0, 40}] (* or *) LinearRecurrence[{6, -9, 4}, {1, 2, 12}, 40] (* Harvey P. Dale, May 27 2021 *)
CROSSREFS
Bisection of A000325.
Sequence in context: A005038 A094780 A268594 * A281028 A054145 A285364
KEYWORD
nonn,easy
AUTHOR
Jorge Coveiro, Dec 26 2004
STATUS
approved