login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100104
a(n) = n^3 - n^2 + 1.
7
1, 1, 5, 19, 49, 101, 181, 295, 449, 649, 901, 1211, 1585, 2029, 2549, 3151, 3841, 4625, 5509, 6499, 7601, 8821, 10165, 11639, 13249, 15001, 16901, 18955, 21169, 23549, 26101, 28831, 31745, 34849, 38149, 41651, 45361, 49285, 53429, 57799, 62401, 67241, 72325
OFFSET
0,3
COMMENTS
Appears to be the number of possible distinct sums of a set of n distinct integers between 1 and n^2. Checked up to n=6. - Dylan Hamilton, Sep 21 2010
a(n) = A100104(n+1) - A100104(n). - Reinhard Zumkeller, Jul 07 2012
REFERENCES
T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
FORMULA
From Harvey P. Dale, Sep 11 2011: (Start)
a(0)=1, a(1)=1, a(2)=5, a(3)=19, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (x^3+7*x^2-3*x+1)/(x-1)^4. (End)
MATHEMATICA
f[n_]:=n^3-n^2+1; Table[f[n], {n, 5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)
Array[#^3-#^2+1&, 50, 0] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 1, 5, 19}, 50] (* Harvey P. Dale, Sep 11 2011 *)
PROG
(Haskell)
a049451 n = n * (3 * n + 1) -- Reinhard Zumkeller, Jul 07 2012
(PARI) a(n)=n^3-n^2+1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A162611. - Vincenzo Librandi, May 27 2010
Cf. A049451 (first differences).
Sequence in context: A277801 A372633 A328191 * A015650 A200764 A285987
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 12 2005
STATUS
approved