login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100104 a(n) = n^3 - n^2 + 1. 7
1, 1, 5, 19, 49, 101, 181, 295, 449, 649, 901, 1211, 1585, 2029, 2549, 3151, 3841, 4625, 5509, 6499, 7601, 8821, 10165, 11639, 13249, 15001, 16901, 18955, 21169, 23549, 26101, 28831, 31745, 34849, 38149, 41651, 45361, 49285, 53429, 57799, 62401, 67241, 72325 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Appears to be the number of possible distinct sums of a set of n distinct integers between 1 and n^2. Checked up to n=6. - Dylan Hamilton, Sep 21 2010

a(n) = A100104(n+1) - A100104(n). - Reinhard Zumkeller, Jul 07 2012

REFERENCES

T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

LINKS

Table of n, a(n) for n=0..42.

Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).

FORMULA

From Harvey P. Dale, Sep 11 2011: (Start)

a(0)=1, a(1)=1, a(2)=5, a(3)=19, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).

G.f.: (x^3+7*x^2-3*x+1)/(x-1)^4. (End)

MATHEMATICA

f[n_]:=n^3-n^2+1; Table[f[n], {n, 5!}] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)

Array[#^3-#^2+1&, 50, 0] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 1, 5, 19}, 50] (* Harvey P. Dale, Sep 11 2011 *)

PROG

(Haskell)

a049451 n = n * (3 * n + 1)  -- Reinhard Zumkeller, Jul 07 2012

(PARI) a(n)=n^3-n^2+1 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Cf. A162611. - Vincenzo Librandi, May 27 2010

Cf. A049451 (first differences).

Sequence in context: A024191 A277801 A328191 * A015650 A200764 A285987

Adjacent sequences:  A100101 A100102 A100103 * A100105 A100106 A100107

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jan 12 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 28 01:45 EST 2020. Contains 332319 sequences. (Running on oeis4.)