Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Oct 07 2015 11:28:11
%S 1,1,5,19,49,101,181,295,449,649,901,1211,1585,2029,2549,3151,3841,
%T 4625,5509,6499,7601,8821,10165,11639,13249,15001,16901,18955,21169,
%U 23549,26101,28831,31745,34849,38149,41651,45361,49285,53429,57799,62401,67241,72325
%N a(n) = n^3 - n^2 + 1.
%C Appears to be the number of possible distinct sums of a set of n distinct integers between 1 and n^2. Checked up to n=6. - _Dylan Hamilton_, Sep 21 2010
%C a(n) = A100104(n+1) - A100104(n). - _Reinhard Zumkeller_, Jul 07 2012
%D T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1).
%F From _Harvey P. Dale_, Sep 11 2011: (Start)
%F a(0)=1, a(1)=1, a(2)=5, a(3)=19, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
%F G.f.: (x^3+7*x^2-3*x+1)/(x-1)^4. (End)
%t f[n_]:=n^3-n^2+1;Table[f[n],{n,5!}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 07 2010 *)
%t Array[#^3-#^2+1&,50,0] (* or *) LinearRecurrence[{4,-6,4,-1},{1,1,5,19},50] (* _Harvey P. Dale_, Sep 11 2011 *)
%o (Haskell)
%o a049451 n = n * (3 * n + 1) -- _Reinhard Zumkeller_, Jul 07 2012
%o (PARI) a(n)=n^3-n^2+1 \\ _Charles R Greathouse IV_, Oct 07 2015
%Y Cf. A162611. - _Vincenzo Librandi_, May 27 2010
%Y Cf. A049451 (first differences).
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, Jan 12 2005