login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100101
Bell(2n)*(2n-1)!!, where Bell are the Bell numbers A000110.
0
1, 2, 45, 3045, 434700, 109596375, 43800340815, 25797179878470, 21243510135522675, 23503974546075598575, 33865310276598741840900, 61964234361152712204340725, 141027420945032510510113517025
OFFSET
0,2
COMMENTS
This sequence arises in the normal ordering problem the exponential of square of boson number operator.
FORMULA
a(n) = Bell(2*n)*(2*n)!/(2^n*n!) = A001147(n)*A000110(2*n).
E.g.f.: G(x) = Sum_{k>=0} exp((k*x)^2/2-1)/k!; a(n) = subs(x=0, (d^(2n)/dx^(2n))G(x)).
MATHEMATICA
Array[BellB[2 #] (2 # - 1)!! &, 13, 0] (* Michael De Vlieger, Dec 24 2017 *)
PROG
(PARI) a(n)=round(exp(-1)*suminf(k=0, k^(2*n)/k!))*(2*n)!/(2^n*n!) \\ Charles R Greathouse IV, Nov 06 2011
CROSSREFS
Sequence in context: A092654 A374863 A209606 * A332244 A090601 A266016
KEYWORD
nonn
AUTHOR
Karol A. Penson, Nov 03 2004
STATUS
approved