login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054145
Row sums of array T as in A054144.
2
0, 2, 12, 58, 256, 1072, 4336, 17112, 66304, 253280, 956608, 3579680, 13292544, 49039360, 179912448, 656874368, 2388205568, 8650598912, 31231020032, 112419973632, 403596148736, 1445463642112, 5165581660160, 18423238924288
OFFSET
0,2
FORMULA
G.f.: 2*x*(1 - x)^2/(1 - 4*x + 2*x^2)^2.
a(n) = ((n-2)*((2 + sqrt(2))^n + (2 - sqrt(2))^n) + sqrt(2)*((2 + sqrt(2))^n - (2 - sqrt(2))^n))/8. - G. C. Greubel, Jul 31 2019
MATHEMATICA
LinearRecurrence[{8, -20, 16, -4}, {0, 2, 12, 58}, 30] (* G. C. Greubel, Jul 31 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(2*x*(1-x)^2/(1-4*x+2*x^2)^2)) \\ G. C. Greubel, Jul 31 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( 2*x*(1-x)^2/(1-4*x+2*x^2)^2 )); // G. C. Greubel, Jul 31 2019
(Sage) (2*x*(1-x)^2/(1-4*x+2*x^2)^2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 31 2019
(GAP) a:=[0, 2, 12, 58];; for n in [5..30] do a[n]:=8*a[n-1]-20*a[n-2] +16*a[n-3]-4*a[n-4]; od; a; # G. C. Greubel, Jul 31 2019
CROSSREFS
Sequence in context: A268594 A100103 A281028 * A285364 A282435 A001758
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 18 2000
STATUS
approved