login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054147
a(n) = T(2n,n), array T as in A054144.
1
0, 3, 21, 108, 492, 2100, 8604, 34272, 133728, 513648, 1948560, 7318080, 27256896, 100815936, 370684608, 1355996160, 4938304512, 17914202880, 64760732928, 233390693376, 838784916480, 3006980379648, 10755352869888
OFFSET
0,2
FORMULA
G.f.: 3*x*(1-x)/(1-4*x+2*x^2)^2.
From Colin Barker, Aug 01 2019: (Start)
a(n) = 8*a(n-1) - 20*a(n-2) + 16*a(n-3) - 4*a(n-4) for n>3.
a(n) = 3*((-(2-sqrt(2))^n*(-1+sqrt(2)) + (1+sqrt(2))*(2+sqrt(2))^n)*n) / 8.
(End)
MATHEMATICA
LinearRecurrence[{8, -20, 16, -4}, {0, 3, 21, 108}, 30] (* G. C. Greubel, Jul 31 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(3*x*(1-x)/(1-4*x+2*x^2)^2)) \\ G. C. Greubel, Jul 31 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( 3*x*(1-x)/(1-4*x+2*x^2)^2 )); // G. C. Greubel, Jul 31 2019
(Sage) (3*x*(1-x)/(1-4*x+2*x^2)^2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 31 2019
(GAP) a:=[0, 3, 21, 108];; for n in [5..30] do a[n]:=8*a[n-1]-20*a[n-2] +16*a[n-3]-4*a[n-4]; od; a; # G. C. Greubel, Jul 31 2019
CROSSREFS
Cf. A054144.
Sequence in context: A128281 A034268 A140451 * A233582 A043012 A122120
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 18 2000
STATUS
approved