OFFSET
1,1
COMMENTS
Definition of "Blazys" generalized continued fraction expansion of an irrational real number x>1:
Set n=1,r=x; (ii) set a(n)=floor(r); (iii) set r=a(n)/(r-a(n)); (iv) increment n and iterate from point (ii).
For the inverse of this mapping, see A233588.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..1000
S. Sykora, Blazys' Expansions and Continued Fractions, Stans Library, Vol.IV, 2013, DOI 10.3247/sl4math13.001
S. Sykora, PARI/GP scripts for Blazys expansions and fractions, OEIS Wiki
FORMULA
Pi = 3+3/(21+21/(111+111/(113+113/(158+...)))).
MATHEMATICA
BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[Pi, 33] (* Robert G. Wilson v, May 22 2014 *)
PROG
(PARI) bx(x, nmax)={local(c, v, k);
v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
bx(Pi, 1000) \\ Execution; use very high real precision
CROSSREFS
KEYWORD
nonn,cofr
AUTHOR
Stanislav Sykora, Jan 02 2014
STATUS
approved