OFFSET
1,1
COMMENTS
Given a nondecreasing sequence s(n) of natural numbers (such as, in this case, that of primes A000079), the corresponding continued fraction is bf(s(n)) = a(1) + a(1)/(a(2) + a(2)/(a(3) + a(3)/(...))).
For the inverse of this mapping of nondecreasing sequences of natural numbers into irrational real numbers greater than 1, see A233582.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..25000 [a(224) onward corrected by Kevin Ryde, Oct 27 2024]
Stanislav Sykora, Blazys' Expansions and Continued Fractions, Stans Library, Vol.IV, 2013, DOI 10.3247/sl4math13.001
Stanislav Sykora, PARI/GP scripts for Blazys expansions and fractions, OEIS Wiki
FORMULA
Equals 2 + 2/(3 + 3/(5 + 5/(7 + 7/(11 + 11/(13 + 13/(17 + ...)))))).
EXAMPLE
2.56654383217138884446752910633228575178297282870231464596973352546639971...
MATHEMATICA
RealDigits[ Fold[(#2 + #2/#1) &, 1, Reverse@ Prime@ Range@ 57], 10, 111][[1]] (* Robert G. Wilson v, May 22 2014 *)
PROG
(PARI) See the link.
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Jan 02 2014
STATUS
approved