login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A233590
Decimal expansion of the continued fraction c(1) +c(1)/(c(2) +c(2)/(c(3) +c(3)/(c(4) +c(4)/....))), where c(i)=2^(i-1).
10
1, 4, 0, 8, 6, 1, 5, 9, 7, 9, 7, 3, 5, 0, 0, 5, 2, 0, 5, 1, 3, 2, 3, 6, 2, 5, 9, 0, 2, 5, 5, 7, 9, 5, 2, 0, 9, 4, 8, 4, 5, 6, 3, 3, 7, 3, 6, 8, 6, 8, 8, 8, 3, 5, 3, 7, 0, 3, 9, 2, 7, 0, 2, 2, 3, 7, 9, 7, 5, 9, 9, 8
OFFSET
1,2
COMMENTS
For more details about this type of continued fraction, see A233588.
This one corresponds to the powers of two sequence.
Corresponds to the regular continued fraction 1,2,2,4,4,8,8,16,16,... = A060546. - Jeffrey Shallit, Jun 14 2016
LINKS
Stanislav Sykora, Table of n, a(n) for n = 1..20000 [a(1522) onward corrected by Kevin Ryde, Oct 26 2024]
Stanislav Sykora, Blazys' Expansions and Continued Fractions, Stans Library, Vol.IV, 2013, DOI 10.3247/sl4math13.001
FORMULA
Equals 1+1/(2+2/(4+4/(8+8/(16+16/(32+...))))).
Equals Product_{k>=0} ((1 - 2^(5*k + 2))*(1 - 2^(5*k + 3)))/((1 - 2^(5*k + 1))*(1 - 2^(5*k + 4))). - Antonio GraciĆ” Llorente, Mar 20 2024
EXAMPLE
1.408615979735005205132362590255795209484563373686888353703927022...
MATHEMATICA
RealDigits[ Fold[(#2 + #2/#1) &, 1, Reverse@ (2^Range[0, 27])], 10, 111][[1]] (* Robert G. Wilson v, May 22 2014 *)
PROG
(PARI) See the link
CROSSREFS
Cf. A000079 (2^n), A096658, A060546.
Cf. Blazys's continued fractions: A233588, A233589, A233591 and Blazys' expansions: A233582, A233583, A233584, A233585, A233586, A233587
Sequence in context: A109169 A011291 A338670 * A078889 A176534 A154847
KEYWORD
nonn,cons
AUTHOR
Stanislav Sykora, Jan 06 2014
STATUS
approved