login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096658
a(n) = (2^n)*a(n-1) + (2^(n-1))*a(n-2), a(0)=1, a(1)=2.
4
1, 2, 10, 88, 1488, 49024, 3185152, 410836992, 105581969408, 54163142606848, 55517115997749248, 113754516621419872256, 466052199134899187220480, 3818365553813175477506932736, 62563919133290380117615296118784
OFFSET
0,2
COMMENTS
This is the sequence of denominators of self-convergents to the number 1.40861... (see A233590) whose self-continued fraction is (1,2,4,8,16,...). See A096657 for numerators and A096654 for definitions.
LINKS
FORMULA
a(n) is asymptotic to c*2^(n(n+1)/2) where c=1.54241381761010214381886547... - Benoit Cloitre, Jul 01 2004
c = (1 + Sum_{k>=1} (Product_{j=1..k} 1/(2^(j-1)*(2^j-1)))) / A233590 = 1.5424138176101021438188654719396629292944606799275904286064... . - Vaclav Kotesovec, Nov 27 2015
MATHEMATICA
a[0]=1; a[1]=2; a[n_] := (2^n)*a[n-1] + (2^(n-1))*a[n-2]; Table[ a[n], {n, 0, 14}] (* Robert G. Wilson v, Jul 03 2004 *)
RecurrenceTable[{a[0]==1, a[1]==2, a[n]==2^n a[n-1]+2^(n-1) a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Feb 16 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 01 2004
EXTENSIONS
More terms from Benoit Cloitre, Jul 02 2004
STATUS
approved