

A096658


a(n) = (2^n)*a(n1) + (2^(n1))*a(n2), a(0)=1, a(1)=2.


3



1, 2, 10, 88, 1488, 49024, 3185152, 410836992, 105581969408, 54163142606848, 55517115997749248, 113754516621419872256, 466052199134899187220480, 3818365553813175477506932736, 62563919133290380117615296118784
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This is the sequence of denominators of selfconvergents to the number 1.40861... (see A233590) whose selfcontinued fraction is (1,2,4,8,16,...). See A096657 for numerators and A096654 for definitions.


LINKS

Table of n, a(n) for n=0..14.


FORMULA

a(n) is asymptotic to c*2^(n(n+1)/2) where c=1.54241381761010214381886547...  Benoit Cloitre, Jul 01 2004
c = (1 + Sum_{k>=1} (Product_{j=1..k} 1/(2^(j1)*(2^j1)))) / A233590 = 1.5424138176101021438188654719396629292944606799275904286064... .  Vaclav Kotesovec, Nov 27 2015


MATHEMATICA

a[0]=1; a[1]=2; a[n_] := (2^n)*a[n1] + (2^(n1))*a[n2]; Table[ a[n], {n, 0, 14}] (* Robert G. Wilson v, Jul 03 2004 *)


CROSSREFS

Cf. A000079, A096654, A096657, A233590.
Sequence in context: A209884 A060350 A270923 * A186184 A055779 A198434
Adjacent sequences: A096655 A096656 A096657 * A096659 A096660 A096661


KEYWORD

nonn


AUTHOR

Clark Kimberling, Jul 01 2004


EXTENSIONS

More terms from Benoit Cloitre, Jul 02 2004


STATUS

approved



